Charged Residues in Surface-located Loops Influence Voltage Gating of Porin from Haemophilus influenzae Type b

Charged Residues in Surface-located Loops Influence Voltage Gating of Porin from Haemophilus... Porin of Haemophilus influenzae type b (341 amino acids; M r 37782) determines the permeability of the outer membrane to low molecular mass compounds. Purified Hib porin was subjected to chemical modification of lysine residues by succinic anhydride. Electrospray ionization mass spectrometry identified up to 12 modifications per porin molecule. Tryptic digestion of modified Hib porin followed by reverse phase chromatography and matrix assisted laser desorption ionization time-of-flight mass spectrometry mapped the succinylation sites. Most modified lysines are positioned in surface-located loops, numbers 1 and 4 to 7. Succinylated porin was reconstituted into planar lipid bilayers, and biophysical properties were analyzed and compared to Hib porin: there was an increased average single channel conductance compared to Hib porin (1.24+/−0.41 vs. 0.85+/−0.40 nanosiemens). The voltage-gating activity of succinylated porin differed considerably from that of Hib porin. The threshold voltage for gating was decreased from 75 to 40 mV. At 80 mV, steady-state conductance for succinylated porin was 50–55% of the instantaneous conductance. Hib porin at 80 mV showed a decrease to 89–91% of the instantaneous current levels. We propose that surface-located lysine residues are determinants of voltage gating for porin of Haemophilus influenzae type b. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Charged Residues in Surface-located Loops Influence Voltage Gating of Porin from Haemophilus influenzae Type b

Loading next page...
 
/lp/springer_journal/charged-residues-in-surface-located-loops-influence-voltage-gating-of-hIVSxZl0nO
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320010026
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial