Charge-state Resolved Infrared Multiple Photon Dissociation (IRMPD) Spectroscopy of Ubiquitin Ions in the Gas Phase

Charge-state Resolved Infrared Multiple Photon Dissociation (IRMPD) Spectroscopy of Ubiquitin... In this study, we obtained for the first time the direct infrared multiple photon dissociation (IRMPD) spectra of ubiquitin ions in the range 2700–3750 cm−1. Ubiquitin ions with different charge states showed absorption in the two regions of 2940–3000 cm−1 and 3280–3400 cm−1. The increase of the charge state of ubiquitin ions broadened the absorption peak on the high-frequency side in the second region, indicating some hydrogen bonds were weakened due to Coulomb interaction. It is also found that the relative intensity of the absorption peak in the first region compared to the absorption peak in the second region increased with increasing charge state, making the IRMPD spectra charge-state resolved. Although it is usually reasonable to suggest the origin of the absorption in the range 2940–3000 cm−1 as the C-H bond stretching modes, the results show significantly reduced absorption after the deuteration of all labile hydrogen atoms. A possible explanation for this is that the coupling coefficients between the C-H vibrational mode and other selective modes decreased greatly after the deuteration, reducing the rate of energy redistribution and probability of consecutive IR absorption. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Charge-state Resolved Infrared Multiple Photon Dissociation (IRMPD) Spectroscopy of Ubiquitin Ions in the Gas Phase

Loading next page...
 
/lp/springer_journal/charge-state-resolved-infrared-multiple-photon-dissociation-irmpd-VsYvNDNd5O
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16831-2
Publisher site
See Article on Publisher Site

Abstract

In this study, we obtained for the first time the direct infrared multiple photon dissociation (IRMPD) spectra of ubiquitin ions in the range 2700–3750 cm−1. Ubiquitin ions with different charge states showed absorption in the two regions of 2940–3000 cm−1 and 3280–3400 cm−1. The increase of the charge state of ubiquitin ions broadened the absorption peak on the high-frequency side in the second region, indicating some hydrogen bonds were weakened due to Coulomb interaction. It is also found that the relative intensity of the absorption peak in the first region compared to the absorption peak in the second region increased with increasing charge state, making the IRMPD spectra charge-state resolved. Although it is usually reasonable to suggest the origin of the absorption in the range 2940–3000 cm−1 as the C-H bond stretching modes, the results show significantly reduced absorption after the deuteration of all labile hydrogen atoms. A possible explanation for this is that the coupling coefficients between the C-H vibrational mode and other selective modes decreased greatly after the deuteration, reducing the rate of energy redistribution and probability of consecutive IR absorption.

Journal

Scientific ReportsSpringer Journals

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off