Charge separation by tetrahexahedron-SrTiO3/TiO2 heterojunction as an efficient photocatalyst

Charge separation by tetrahexahedron-SrTiO3/TiO2 heterojunction as an efficient photocatalyst Charge separation plays a key role in the conversion of solar energy into chemical energy for use in the redox reaction and as well as in the photocatalytic activity. In this study, SrTiO3 particles with different morphologies including irregular, tetrahexahedron, and cube were synthesized by an in situ solvothermal method. The photocatalytic activity of the synthesized nanoparticles was investigated in the photocatalytic decomposition of methylene blue under UV light irradiation. Tetrahexahedron SrTiO3 particles exhibited high decomposition activity (70 %), which is about two times higher than those of the irregular and cubic SrTiO3 particles. The high decomposition activity of tetrahexahedron SrTiO3 particles could be attributed to the improvement of charge separation achieved on different crystal facets. To reach a good charge separation, tetrahexahedron SrTiO3/TiO2 coupled nanoparticles were fabricated by impregnation method. Results showed that coupling tetrahexahedron SrTiO3 with TiO2 could produce efficient charge separation between tetrahexahedron SrTiO3 and TiO2 due to their matched band edges. In order to achieve better charge separation, the tetrahexahedron SrTiO3/90 %TiO2 sample was calcined at different temperatures in the 450–750 °C range. Tetrahexahedron SrTiO3/90 %TiO2 coupled nanoparticles calcined at 650 °C show high photocatalytic activity compared with other samples. The prepared samples were characterized by using various techniques such as X-ray diffraction, scanning electron microscopy, photoluminescence emission spectra, and UV–Vis diffuse reflectance spectroscopy. Research on Chemical Intermediates Springer Journals

Charge separation by tetrahexahedron-SrTiO3/TiO2 heterojunction as an efficient photocatalyst

Loading next page...
Springer Netherlands
Copyright © 2016 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial