Characterizing the lower log region of the atmospheric surface layer via large-scale particle tracking velocimetry

Characterizing the lower log region of the atmospheric surface layer via large-scale particle... As a first step toward characterizing coherent structures within the atmospheric surface layer (ASL), measurements obtained via a large-scale particle tracking velocimetry (LS-PTV) system were validated against wind-measurement station data as well as canonical turbulent boundary layer studies. The LS-PTV system resolves three-dimensional, Lagrangian tracks over a 16 m3 volume. Mean-velocity measurements, as well as vertical and shear Reynolds-stress measurements, generally agreed with wind-measurement station data and Reynolds-stress profiles referenced from literature. The probability distributions for streamwise, spanwise and vertical velocity-fluctuation components appear normally distributed about zero. Furthermore, the probability distributions for all three components of Lagrangian acceleration were exponential and followed the parametrization curve from LaPorta et al. (Lett Nat 409:1017–1019, 2001). Lastly, the vorticity probability distributions were exponential and symmetric about zero, which matches findings from Balint et al. (Fluid Mech 228:53–86, 1991). The vorticity intensity measured by the LS-PTV system was less than values from Priyadarshana et al. (Fluid Mech 570:307–346, 2007), which is attributed to the low spatial resolution. However, the average spacing of 0.5 m between tracer particles is deemed sufficient for the future characterization of vortical structures within the ASL. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Characterizing the lower log region of the atmospheric surface layer via large-scale particle tracking velocimetry

Loading next page...
 
/lp/springer_journal/characterizing-the-lower-log-region-of-the-atmospheric-surface-layer-RP2nq9YR3V
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1736-2
Publisher site
See Article on Publisher Site

Abstract

As a first step toward characterizing coherent structures within the atmospheric surface layer (ASL), measurements obtained via a large-scale particle tracking velocimetry (LS-PTV) system were validated against wind-measurement station data as well as canonical turbulent boundary layer studies. The LS-PTV system resolves three-dimensional, Lagrangian tracks over a 16 m3 volume. Mean-velocity measurements, as well as vertical and shear Reynolds-stress measurements, generally agreed with wind-measurement station data and Reynolds-stress profiles referenced from literature. The probability distributions for streamwise, spanwise and vertical velocity-fluctuation components appear normally distributed about zero. Furthermore, the probability distributions for all three components of Lagrangian acceleration were exponential and followed the parametrization curve from LaPorta et al. (Lett Nat 409:1017–1019, 2001). Lastly, the vorticity probability distributions were exponential and symmetric about zero, which matches findings from Balint et al. (Fluid Mech 228:53–86, 1991). The vorticity intensity measured by the LS-PTV system was less than values from Priyadarshana et al. (Fluid Mech 570:307–346, 2007), which is attributed to the low spatial resolution. However, the average spacing of 0.5 m between tracer particles is deemed sufficient for the future characterization of vortical structures within the ASL.

Journal

Experiments in FluidsSpringer Journals

Published: May 13, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off