Characterizations of a Hypomorphic Argonaute1 Mutant Reveal Novel AGO1 Functions in Arabidopsis Lateral Organ Development

Characterizations of a Hypomorphic Argonaute1 Mutant Reveal Novel AGO1 Functions in Arabidopsis... Genes that encode the ARGONAUTE (AGO) proteins make up a highly conserved family, and several members in the family have been defined to function in posttranscriptional gene silencing (PTGS) in plants, quelling in fungi and RNAi in animals. The Arabidopsis AGO1 gene has been demonstrated to be crucial in multiple RNA silencing pathways (PTGS, microRNA and trans-acting siRNA pathways); however, its biological functions do not seem to be fully addressed. Here we report characterizations of a new hypomorphic ago1 allele, ago1-37, and show novel AGO1 functions important in lateral organ development. We found that double mutants combining ago1-37 with asymmetric leaves1 (as1) or asymmetric leaves2 (as2) produced more severe phenotypes than the single mutants, indicating that AGO1 genetically interacts with AS1 and AS2 for plant development. Similar to the previously characterized mutants rdr6, sgs3 and zippy, which are deficient in the trans-acting siRNA activity, ago1-37 also showed an earlier phase transition from juvenile to adult leaves. Moreover, based on the detailed phenotypic analyses of single and double mutant plants, we found that the AGO1 functions are required for repressing several class I KNOTTED1-like homeobox (KNOX) genes in leaves, and for specifying both adaxial and abaxial identities of the leaf and petal. Our results demonstrate several important AGO1 functions in plant lateral organ development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterizations of a Hypomorphic Argonaute1 Mutant Reveal Novel AGO1 Functions in Arabidopsis Lateral Organ Development

Loading next page...
 
/lp/springer_journal/characterizations-of-a-hypomorphic-argonaute1-mutant-reveal-novel-ago1-0GTgP5S50b
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-5992-7
Publisher site
See Article on Publisher Site

Abstract

Genes that encode the ARGONAUTE (AGO) proteins make up a highly conserved family, and several members in the family have been defined to function in posttranscriptional gene silencing (PTGS) in plants, quelling in fungi and RNAi in animals. The Arabidopsis AGO1 gene has been demonstrated to be crucial in multiple RNA silencing pathways (PTGS, microRNA and trans-acting siRNA pathways); however, its biological functions do not seem to be fully addressed. Here we report characterizations of a new hypomorphic ago1 allele, ago1-37, and show novel AGO1 functions important in lateral organ development. We found that double mutants combining ago1-37 with asymmetric leaves1 (as1) or asymmetric leaves2 (as2) produced more severe phenotypes than the single mutants, indicating that AGO1 genetically interacts with AS1 and AS2 for plant development. Similar to the previously characterized mutants rdr6, sgs3 and zippy, which are deficient in the trans-acting siRNA activity, ago1-37 also showed an earlier phase transition from juvenile to adult leaves. Moreover, based on the detailed phenotypic analyses of single and double mutant plants, we found that the AGO1 functions are required for repressing several class I KNOTTED1-like homeobox (KNOX) genes in leaves, and for specifying both adaxial and abaxial identities of the leaf and petal. Our results demonstrate several important AGO1 functions in plant lateral organ development.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 19, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off