Characterizations of a Hypomorphic Argonaute1 Mutant Reveal Novel AGO1 Functions in Arabidopsis Lateral Organ Development

Characterizations of a Hypomorphic Argonaute1 Mutant Reveal Novel AGO1 Functions in Arabidopsis... Genes that encode the ARGONAUTE (AGO) proteins make up a highly conserved family, and several members in the family have been defined to function in posttranscriptional gene silencing (PTGS) in plants, quelling in fungi and RNAi in animals. The Arabidopsis AGO1 gene has been demonstrated to be crucial in multiple RNA silencing pathways (PTGS, microRNA and trans-acting siRNA pathways); however, its biological functions do not seem to be fully addressed. Here we report characterizations of a new hypomorphic ago1 allele, ago1-37, and show novel AGO1 functions important in lateral organ development. We found that double mutants combining ago1-37 with asymmetric leaves1 (as1) or asymmetric leaves2 (as2) produced more severe phenotypes than the single mutants, indicating that AGO1 genetically interacts with AS1 and AS2 for plant development. Similar to the previously characterized mutants rdr6, sgs3 and zippy, which are deficient in the trans-acting siRNA activity, ago1-37 also showed an earlier phase transition from juvenile to adult leaves. Moreover, based on the detailed phenotypic analyses of single and double mutant plants, we found that the AGO1 functions are required for repressing several class I KNOTTED1-like homeobox (KNOX) genes in leaves, and for specifying both adaxial and abaxial identities of the leaf and petal. Our results demonstrate several important AGO1 functions in plant lateral organ development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterizations of a Hypomorphic Argonaute1 Mutant Reveal Novel AGO1 Functions in Arabidopsis Lateral Organ Development

Loading next page...
 
/lp/springer_journal/characterizations-of-a-hypomorphic-argonaute1-mutant-reveal-novel-ago1-0GTgP5S50b
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-5992-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial