Characterization of the Taurine Transport Pathway in A6 Kidney Cells

Characterization of the Taurine Transport Pathway in A6 Kidney Cells We investigated the role of taurine in cell homeostasis and characterized the taurine transport pathway in cultured kidney cells (A6). The taurine concentration in A6 cells varies with the osmolarity of the culture medium, suggesting that taurine participates in cell osmolarity. Under isosmotic conditions, 14C-taurine efflux through the apical membranes (aJtaur) was 6–7 times lower than that through the basolateral membranes (bJtaur). Under hyposmotic conditions, aJtaur remained almost unchanged. On the contrary, bJtaur increased 8 times in comparison with isosmotic conditions. In hyposmotic conditions, bJtaur was inhibited by 500 mM DIDS, 50 mM NPPB, 10 mM of the two oxonol derivatives DISBAC(2)3 and WW-791, and 100 mM ketoconazole. Conversely, 100 mM 1,9-dideoxyforskolin, 10 mM tamoxifen, 100 mM niflumic acid and 50 mM verapamil had no inhibitory effects. Cell volume regulation upon hyposmotic stress was also found to be inhibited by DISBAC(2)3 (K0.5 of 5±1 mM) and by ketoconazole. Nystatin was used to permeabilize the apical membranes with the aim to further characterize bJtaur. 14C-taurine transepithelial fluxes in nystatin-treated cells were found to be linear over taurine concentrations ranging from 3.5 mM to 35 mM. Clamping the transepithelial voltage at positive values (serosal side) slightly stimulated the 14C-taurine transport. Similar time courses of 14C-taurine, 36Cl and 86Rb transepithelial fluxes were found under osmotic stimulation followed by DIDS inhibition in nystatin-treated cells. In whole cell patch-clamp experiments, DISBAC(2)3 application resulted in a strong and reversible decrease of the global Cl? current which was stimulated by hyposmotic stress. Our study indicates that taurine participates in the control of A6 cell osmolarity and that the transporting taurine pathway (efflux) is on the basolateral membranes. In addition to usual chloride channel blockers, oxonol was found to be a potent blocker of the taurine transport and of the swelling-activated chloride current. Using a pharmacological approach, we could not distinguish between a common or different pathway for Cl? and taurine. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Characterization of the Taurine Transport Pathway in A6 Kidney Cells

Loading next page...
 
/lp/springer_journal/characterization-of-the-taurine-transport-pathway-in-a6-kidney-cells-8ukE7duSCu
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-1028-2
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial