Characterization of the targeting signal of dual-targeted pea glutathione reductase

Characterization of the targeting signal of dual-targeted pea glutathione reductase We investigated the dual targeting signal of pea glutathione reductase (GR) that had been previously shown to be capable of targeting the passenger protein phosphinothricin acetyl transferase to mitochondria and chloroplasts in vivo. We confirmed that GR was imported into mitochondria and chloroplasts in vitro. Rupture of the outer mitochondrial membrane after the import assay indicated that GR was imported into both the intermembrane space and the matrix. Changing positive and hydrophobic residues in the targeting signal we investigated if dual targeting of GR was due to an overlapping or separate signal. Overall single mutations had a greater effect on mitochondrial import compared to chloroplasts, especially those on positive residues. Precursors containing both positive and hydrophobic residue mutations (double mutants) indicated that there might be some redundancy in targeting information for chloroplastic import as double mutants had a greater effect than predicted from the single mutants. Fusion of the targeting signal to the green fluorescent protein (GFP) followed by transient transformation indicated that this signal was only capable of targeting this passenger protein to plastids. Additionally, fusion of the complete coding sequence of GR to GFP also resulted in an exclusive chloroplastic localization. Mutations in the targeting signal that reduced import into plastids in vitro also displayed altered patterns of GFP localizations in vivo. These results indicate that some residues in the signal for dual localisation of GR play a role in both mitochondrial and chloroplastic import, and thus the signal is overlapping. Plant Molecular Biology Springer Journals

Characterization of the targeting signal of dual-targeted pea glutathione reductase

Loading next page...
Kluwer Academic Publishers
Copyright © 2003 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial