Characterization of the Russian beef cattle breed gene pools using inter simple sequence repeat DNA analysis (ISSR analysis)

Characterization of the Russian beef cattle breed gene pools using inter simple sequence repeat... The gene pools of beef cattle breeds bred in Russia were characterized on the basis of inter simple sequence repeat DNA analysis (ISSR analysis). Samples of Aberdeen Angus, Kalmyk, and Kazakh Whitehead breeds from Russia, as well as of Hereford breed, hybrids of Kazakh Whitehead and Hereford breeds, and Kazakh Whitehead breed from the Republic of Kazakhstan, were examined. In the examined breeds, 27 AG-ISSR fragments were identified, 25 of which were polymorphic. The examined breeds were different both in the fragment profiles (the presence/absence of individual ISSR fragments) and in their frequencies. It was demonstrated that the hybrid animals lacked some ISSR fragments that were present with high frequencies in parental forms, suggesting considerable genome rearrangement in the hybrid animals (at the regions of microsatellite localization) in crossings of the individuals from different breeds. The level of genetic diversity in Russian beef breeds was consistent with the values typical of farmed populations (breeds). The genetic diversity parameters assessed by applying Nei’s gene diversity index and the Shannon index varied from 0.0218 to 0.0605 and from 0.0225 to 0.0819, respectively. The highest Shannon index value was detected in the Kalmyk breed (0.0837) and Kazakh Whitehead breed from Russia (0.0819), and the highest level of Nei’s gene diversity index was found in the Kalmyk breed (0.0562) and in both populations of the Kazakh Whitehead breed (0.0509 and 0.0605). The high level of genetic similarity (according to Nei) was revealed between Russian beef cattle breeds and Hereford cattle: 0.839 (for the Kazakh Whitehead breed from Russia) and 0.769 (for the Kalmyk breed). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Characterization of the Russian beef cattle breed gene pools using inter simple sequence repeat DNA analysis (ISSR analysis)

Loading next page...
 
/lp/springer_journal/characterization-of-the-russian-beef-cattle-breed-gene-pools-using-hg6S7D0O6I
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795416090143
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial