Characterization of the potato MADS-box gene STMADS16 and expression analysis in tobacco transgenic plants

Characterization of the potato MADS-box gene STMADS16 and expression analysis in tobacco... A new MADS-box gene, STMADS16, has been cloned in Solanum tuberosum L. that is expressed in all vegetative tissues of the plant, mainly in the stem, but not in flower organs. STMADS16 expression is established early during vegetative development and is not regulated by light. Sequence similarity besides the spatial and temporal expression patterns allow to define a novel MADS-box subfamily comprising STMADS16 and the gene STMADS11. Expression of the STMADS16 sense cDNA under the control of the 35S cauliflower mosaic virus promoter modifies the inflorescence structure by increasing both internode length and flower proliferation of the inflorescence meristems, and confers vegetative features to the flower. Moreover, STMADS16 ectopic expression overcomes the increase in flowering time and node number produced under short-day photoperiod, while the flowering time is not affected in long-day conditions. These results are discussed in terms of a possible role for STMADS16 in promoting vegetative development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of the potato MADS-box gene STMADS16 and expression analysis in tobacco transgenic plants

Loading next page...
 
/lp/springer_journal/characterization-of-the-potato-mads-box-gene-stmads16-and-expression-pnihYrFJYy
Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006397427894
Publisher site
See Article on Publisher Site

Abstract

A new MADS-box gene, STMADS16, has been cloned in Solanum tuberosum L. that is expressed in all vegetative tissues of the plant, mainly in the stem, but not in flower organs. STMADS16 expression is established early during vegetative development and is not regulated by light. Sequence similarity besides the spatial and temporal expression patterns allow to define a novel MADS-box subfamily comprising STMADS16 and the gene STMADS11. Expression of the STMADS16 sense cDNA under the control of the 35S cauliflower mosaic virus promoter modifies the inflorescence structure by increasing both internode length and flower proliferation of the inflorescence meristems, and confers vegetative features to the flower. Moreover, STMADS16 ectopic expression overcomes the increase in flowering time and node number produced under short-day photoperiod, while the flowering time is not affected in long-day conditions. These results are discussed in terms of a possible role for STMADS16 in promoting vegetative development.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off