Characterization of the mouse ubiquitin-conjugating enzyme gene UbcM4

Characterization of the mouse ubiquitin-conjugating enzyme gene UbcM4 The ubiquitination pathway targets not only normal (short-lived) intracellular eukaryotic proteins for degradation when appropriate, but also serves to eliminate mutant/misfolded proteins from the cell. An understanding of the molecular basis of the interaction between the ubiquitin-conjugating enzymes (E2s), ubiquitin protein ligases (E3s), and target proteins is essential to explain the process in normal cellular function and in disease. UbcM4 is the mouse ortholog of the human E2, UbcH7, which can participate in the in vitro degradation of many proteins including p53. We describe the characterization of the mouse UbcM4 gene and the identification of a UbcM4 pseudogene. Four UbcM4 transcripts of approximately 0.7, 1.5, 2.1, and 2.6 kb, observed on Northern blots, are differentiated by their utilization of alternative UbcM4 polyadenylation sites. A single alternative splice variant cDNA, termed UbcM4Δex2, was also identified. The polypeptide encoded by UbcM4Δex2 is incapable of forming an ubiquitin-thioester in contrast to UbcM4, despite retaining the key cysteine residue essential for ubiquitin thioester formation and the active site consensus sequence that defines the ubiquitin-conjugating enzyme class. These observations are of particular relevance for analysis of UbcM4 function in vivo as our studies indicate that the targeted deletion of the coding exon absent in UbcM4Δex2 would produce an inactive UbcM4 protein and presents an alternative to disruption of its transcriptional initiation site/promoter region. Furthermore, it suggests that a similar strategy may be applicable to disrupt the function of other ubiquitin-conjugating enzymes in vivo. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Characterization of the mouse ubiquitin-conjugating enzyme gene UbcM4

Loading next page...
 
/lp/springer_journal/characterization-of-the-mouse-ubiquitin-conjugating-enzyme-gene-ubcm4-9nFjOjMX09
Publisher
Springer Journals
Copyright
Copyright © 1999 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359901143
Publisher site
See Article on Publisher Site

Abstract

The ubiquitination pathway targets not only normal (short-lived) intracellular eukaryotic proteins for degradation when appropriate, but also serves to eliminate mutant/misfolded proteins from the cell. An understanding of the molecular basis of the interaction between the ubiquitin-conjugating enzymes (E2s), ubiquitin protein ligases (E3s), and target proteins is essential to explain the process in normal cellular function and in disease. UbcM4 is the mouse ortholog of the human E2, UbcH7, which can participate in the in vitro degradation of many proteins including p53. We describe the characterization of the mouse UbcM4 gene and the identification of a UbcM4 pseudogene. Four UbcM4 transcripts of approximately 0.7, 1.5, 2.1, and 2.6 kb, observed on Northern blots, are differentiated by their utilization of alternative UbcM4 polyadenylation sites. A single alternative splice variant cDNA, termed UbcM4Δex2, was also identified. The polypeptide encoded by UbcM4Δex2 is incapable of forming an ubiquitin-thioester in contrast to UbcM4, despite retaining the key cysteine residue essential for ubiquitin thioester formation and the active site consensus sequence that defines the ubiquitin-conjugating enzyme class. These observations are of particular relevance for analysis of UbcM4 function in vivo as our studies indicate that the targeted deletion of the coding exon absent in UbcM4Δex2 would produce an inactive UbcM4 protein and presents an alternative to disruption of its transcriptional initiation site/promoter region. Furthermore, it suggests that a similar strategy may be applicable to disrupt the function of other ubiquitin-conjugating enzymes in vivo.

Journal

Mammalian GenomeSpringer Journals

Published: Oct 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off