Characterization of the High-Affinity Verapamil Binding Site in a Plant Plasma Membrane Ca2+-selective Channel

Characterization of the High-Affinity Verapamil Binding Site in a Plant Plasma Membrane... Despite biochemical evidence for the existence of high-affinity phenylalkylamine receptors in higher plants, their effects on channel activity have only been demonstrated at relatively high concentrations. We have performed a quantitative single-channel analysis of the changes induced by extracellular verapamil in the rca channel [a wheat root plasma membrane Ca2+-selective channel (Piñeros & Tester, 1995. Planta 195:478–488)]. Concentrations as low as 0.5 μm verapamil induced a blockade of the inward current, with no evident reduction of the single-channel current amplitude. Blockade by verapamil was concentration and voltage dependent. Preliminary analysis suggested the blockade was due to a reduction in the maximum open state probability rather than a change in V0.5. Further analysis of the association and dissociation rate constants revealed a binding site located 56 to 59% down the voltage drop from the extracellular face of the channel, with a K d (0) of 24 to 26 μm. This results in a K d at −100 mV of 2 μm. Methoxyverapamil had qualitatively the same effects. This intra-pore binding site can be accessed directly from the extracellular side of the rca channel, but apparently not from the cytosolic side. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Characterization of the High-Affinity Verapamil Binding Site in a Plant Plasma Membrane Ca2+-selective Channel

Loading next page...
 
/lp/springer_journal/characterization-of-the-high-affinity-verapamil-binding-site-in-a-cUtQMWgzOA
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900223
Publisher site
See Article on Publisher Site

Abstract

Despite biochemical evidence for the existence of high-affinity phenylalkylamine receptors in higher plants, their effects on channel activity have only been demonstrated at relatively high concentrations. We have performed a quantitative single-channel analysis of the changes induced by extracellular verapamil in the rca channel [a wheat root plasma membrane Ca2+-selective channel (Piñeros & Tester, 1995. Planta 195:478–488)]. Concentrations as low as 0.5 μm verapamil induced a blockade of the inward current, with no evident reduction of the single-channel current amplitude. Blockade by verapamil was concentration and voltage dependent. Preliminary analysis suggested the blockade was due to a reduction in the maximum open state probability rather than a change in V0.5. Further analysis of the association and dissociation rate constants revealed a binding site located 56 to 59% down the voltage drop from the extracellular face of the channel, with a K d (0) of 24 to 26 μm. This results in a K d at −100 mV of 2 μm. Methoxyverapamil had qualitatively the same effects. This intra-pore binding site can be accessed directly from the extracellular side of the rca channel, but apparently not from the cytosolic side.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 15, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off