Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.)

Characterization of the genomic structures and selective expression profiles of nine class I... The cytosolic class I small heat shock proteins (sHSP-CI) represent the most abundant sHSP in plants. Here, we report the characterization and the expression profile of nine members of the sHSP-CI gene family in rice (Oryza sativa Tainung No.67), of which Oshsp16.9A, Oshsp16.9B, Oshsp16.9C, Oshsp16.9D and Oshsp17.9B are clustered on chromosome 1, and Oshsp17.3, Oshsp17.7, Oshsp17.9A and Oshsp18.0 are clustered on chromosome 3. Oshsp17.3 and Oshsp18.0 are linked by a 356-bp putative bi-directional promoter. Individual gene products were identified from the protein subunits of a heat shock complex (HSC) and from in vitro transcription/ translation products by two-dimensional gel electrophoreses (2-DE). All sHSP-CI genes except Oshsp17.9B were induced strongly after a 2-h heat shock treatment. The genes on chromosome 3 were induced rapidly at 32  and 41 °C, whereas those on chromosome 1 were induced slowly by similar conditions. Seven of these genes, except Oshsp16.9D and Oshsp17.9B, were induced by arsenite (As), but only genes on chromosome 3 were strongly induced by azetidine-2-carboxylic acid (Aze, a proline analog) and cadmium (Cd). A similar expression profile of all sHSP-CI genes at a lower level was evoked by ethanol, H2O2 and CuCl2 treatments. Transient expression assays of the promoter activity by linking to GUS reporter gene also supported the in vivo selective expression of the sHSP-CI genes by Aze treatment indicating the differential induction of rice sHSP-CI genes is most likely regulated at the transcriptional level. Only Oshsp16.9A abundantly accumulated in mature dry seed also suggested additionally prominent roles played by this HSP in development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.)

Loading next page...
 
/lp/springer_journal/characterization-of-the-genomic-structures-and-selective-expression-LfGxmjs4RE
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-5182-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial