Characterization of the Arabidopsis TU8 Glucosinolate Mutation,an Allele of TERMINAL FLOWER2

Characterization of the Arabidopsis TU8 Glucosinolate Mutation,an Allele of TERMINAL FLOWER2 Glucosinolates are a group of defense-related secondary metabolites found in Arabidopsis and other cruciferous plants. Levels of leaf glucosinolates are regulated during plant development and increase in response to mechanical damage or insect feeding. The Arabidopsis TU8 mutant has a developmentally altered leaf glucosinolate profile: aliphatic glucosinolate levels drop off more rapidly, consistent with the early senescence of the mutant, and the levels of two indole glucosinolates are uniformly low. In TU8 seeds, four long-chain aliphatic glucosinolates have significantly increased levels, whereas the indolyl-3-methyl glucosinolate level is significantly reduced relative to wild type. Genetic mapping and DNA sequencing identified the TU8 mutation as tfl2-6, a new allele of TERMINAL FLOWER2(TFL2), the only Arabidopsis homolog of animal HETEROCHROMATIN PROTEIN1(HP1). TU8(tfl2-6) has other previously identified tfl2 phenotypes, including an early transition to flowering, altered meristem structure, and stunted leaves. Analysis of two additional alleles, tfl2-1 and tfl2-2, showed glucosinolate profiles similar to those of line TU8 (tfl2-6). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of the Arabidopsis TU8 Glucosinolate Mutation,an Allele of TERMINAL FLOWER2

Loading next page...
 
/lp/springer_journal/characterization-of-the-arabidopsis-tu8-glucosinolate-mutation-an-TJ0O0c5IJy
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000040897.49151.98
Publisher site
See Article on Publisher Site

Abstract

Glucosinolates are a group of defense-related secondary metabolites found in Arabidopsis and other cruciferous plants. Levels of leaf glucosinolates are regulated during plant development and increase in response to mechanical damage or insect feeding. The Arabidopsis TU8 mutant has a developmentally altered leaf glucosinolate profile: aliphatic glucosinolate levels drop off more rapidly, consistent with the early senescence of the mutant, and the levels of two indole glucosinolates are uniformly low. In TU8 seeds, four long-chain aliphatic glucosinolates have significantly increased levels, whereas the indolyl-3-methyl glucosinolate level is significantly reduced relative to wild type. Genetic mapping and DNA sequencing identified the TU8 mutation as tfl2-6, a new allele of TERMINAL FLOWER2(TFL2), the only Arabidopsis homolog of animal HETEROCHROMATIN PROTEIN1(HP1). TU8(tfl2-6) has other previously identified tfl2 phenotypes, including an early transition to flowering, altered meristem structure, and stunted leaves. Analysis of two additional alleles, tfl2-1 and tfl2-2, showed glucosinolate profiles similar to those of line TU8 (tfl2-6).

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 21, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off