Characterization of Super Paramagnetic Nanoparticles Coated with a Biocompatible Polymer Produced by Dextransucrase from Weissella cibaria JAG8

Characterization of Super Paramagnetic Nanoparticles Coated with a Biocompatible Polymer Produced... Magnetic nanoparticles (MNPs) synthesised by chemical co-precipitation method was subjected to dextran coating by sonication method. The dextran was enzymatically synthesised by extracellular dextransucrase isolated from Weissella cibaria JAG8. The crystalline nature of MNPs and dextran coated MNPs were confirmed by X-ray diffraction studies with average particle size of 25 nm, which was confirmed further by high resolution transmission electron microscopy. The surface morphology of MNPs and dextran coated MNPs were monitored by scanning electron microscopy studies. The vibrating sample magnetometer investigation displayed the super paramagnetic nature of MNPs and dextran coated MNPs. FT-IR analysis of MNPs and dextran coated MNPs, displayed characteristic band of Fe–O bond at 582 cm−1. Thermo-gravimetric analysis of MNPs and dextran coated MNPs (1:1) ratio displayed a weight loss of 15 and 18 %, which clearly indicated 3.0 % of dextran was coated on to the MNPs. The elemental composition study by scanning electron microscopy confirmed the association of dextran with MNPs. The in vitro effect of MNPs and dextran coated MNPs was performed on human colon cancer (HT-29) cell lines and the results showed that dextran coated: MNPs (2:1) displayed good biocompatibility results over dextran coated: MNPs (1:1) and un-coated MNPs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Polymers and the Environment Springer Journals

Characterization of Super Paramagnetic Nanoparticles Coated with a Biocompatible Polymer Produced by Dextransucrase from Weissella cibaria JAG8

Loading next page...
 
/lp/springer_journal/characterization-of-super-paramagnetic-nanoparticles-coated-with-a-uoFZ1ZSL0p
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Chemistry; Polymer Sciences; Environmental Chemistry; Materials Science, general; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering
ISSN
1566-2543
eISSN
1572-8900
D.O.I.
10.1007/s10924-016-0836-x
Publisher site
See Article on Publisher Site

Abstract

Magnetic nanoparticles (MNPs) synthesised by chemical co-precipitation method was subjected to dextran coating by sonication method. The dextran was enzymatically synthesised by extracellular dextransucrase isolated from Weissella cibaria JAG8. The crystalline nature of MNPs and dextran coated MNPs were confirmed by X-ray diffraction studies with average particle size of 25 nm, which was confirmed further by high resolution transmission electron microscopy. The surface morphology of MNPs and dextran coated MNPs were monitored by scanning electron microscopy studies. The vibrating sample magnetometer investigation displayed the super paramagnetic nature of MNPs and dextran coated MNPs. FT-IR analysis of MNPs and dextran coated MNPs, displayed characteristic band of Fe–O bond at 582 cm−1. Thermo-gravimetric analysis of MNPs and dextran coated MNPs (1:1) ratio displayed a weight loss of 15 and 18 %, which clearly indicated 3.0 % of dextran was coated on to the MNPs. The elemental composition study by scanning electron microscopy confirmed the association of dextran with MNPs. The in vitro effect of MNPs and dextran coated MNPs was performed on human colon cancer (HT-29) cell lines and the results showed that dextran coated: MNPs (2:1) displayed good biocompatibility results over dextran coated: MNPs (1:1) and un-coated MNPs.

Journal

Journal of Polymers and the EnvironmentSpringer Journals

Published: Sep 22, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off