Characterization of resistance in transgenic Nicotiana benthamiana encoding N-terminal deletion and assembly mutants of the tobacco etch potyvirus coat protein

Characterization of resistance in transgenic Nicotiana benthamiana encoding N-terminal deletion... The resistance of transgenic Nicotiana benthamiana plants encoding wild type, truncated and point mutants of the tobacco etch virus (TEV) coat protein (CP) was analyzed. After R1 plants from 45 transgenic lines were challenged with TEV, six percent of the lines exhibited high resistance, 38% exhibited low resistance, and the remainder were susceptible. The phenomenon of recovery and delay in symptom development was observed in 65% and 56% of the resistant and susceptible lines, respectively. Plants containing genes that encode sequences of two assembly-deficient mutants of TEV-CPΔ1-63 exhibited resistance to infection, suggesting that self-assembly of the CP is not responsible for resistance. Highly resistant lines accumulated low levels of transgene mRNA and non-detectable amounts of protein, and tissues accumulated lower amounts of transgene mRNA following recovery than before infection. In addition, co-suppression of replication of a recombinant tobamovirus containing the TEV-CPΔ1-63 sequence was observed in several lines, suggesting homology-dependent degradation of RNA, most likely through induction of post-transcriptional gene silencing. Plants not exhibiting high resistance via gene silencing exhibited moderate levels of resistance that is attributed to and/or affected by the CP molecule. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Characterization of resistance in transgenic Nicotiana benthamiana encoding N-terminal deletion and assembly mutants of the tobacco etch potyvirus coat protein

Loading next page...
 
/lp/springer_journal/characterization-of-resistance-in-transgenic-nicotiana-benthamiana-CqiM9MpXTf
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag/Wien
Subject
Biomedicine; Medical Microbiology; Infectious Diseases; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-005-0577-y
Publisher site
See Article on Publisher Site

Abstract

The resistance of transgenic Nicotiana benthamiana plants encoding wild type, truncated and point mutants of the tobacco etch virus (TEV) coat protein (CP) was analyzed. After R1 plants from 45 transgenic lines were challenged with TEV, six percent of the lines exhibited high resistance, 38% exhibited low resistance, and the remainder were susceptible. The phenomenon of recovery and delay in symptom development was observed in 65% and 56% of the resistant and susceptible lines, respectively. Plants containing genes that encode sequences of two assembly-deficient mutants of TEV-CPΔ1-63 exhibited resistance to infection, suggesting that self-assembly of the CP is not responsible for resistance. Highly resistant lines accumulated low levels of transgene mRNA and non-detectable amounts of protein, and tissues accumulated lower amounts of transgene mRNA following recovery than before infection. In addition, co-suppression of replication of a recombinant tobamovirus containing the TEV-CPΔ1-63 sequence was observed in several lines, suggesting homology-dependent degradation of RNA, most likely through induction of post-transcriptional gene silencing. Plants not exhibiting high resistance via gene silencing exhibited moderate levels of resistance that is attributed to and/or affected by the CP molecule.

Journal

Archives of VirologySpringer Journals

Published: Dec 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off