Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Characterization of promoter elements required for expression and induction by sucrose of the Arabidopsis COX5b-1 nuclear gene, encoding the zinc-binding subunit of cytochrome c oxidase

Characterization of promoter elements required for expression and induction by sucrose of the... Arabidopsis COX5b-1 encodes an isoform of the zinc binding subunit 5b of mitochondrial cytochrome c oxidase. A promoter region required for expression and induction by sucrose of this gene was analyzed using plants stably transformed with mutagenized promoter fragments fused to the gus reporter gene. Promoter dependent expression is absolutely dependent on a G-box present at −228 from the translation start site. This element interacts in vitro and in vivo with transcription factors from the bZip family, preferentially with the abscisic acid-responsive element binding factor AREB2/ABF4. A region located upstream of the G-box (−333/−259) contains elements with the core sequence ATCATT and distalB-like sequences (CCACTTG) that are required for expression in vegetative tissues. These sequences bind different sets of proteins present in plant nuclear extracts and participate in induction by sucrose (ATCATT) and abscisic acid (distalB) of the COX5b-1 promoter. We propose that the COX5b-1 promoter has acquired novel regulatory mechanisms during evolution after gene duplication. These novel mechanisms have allowed the diversification of expression patterns, but also the conservation of some responses that, as induction by sucrose, are shared by COX5b-1 and other genes encoding components of the mitochondrial respiratory chain. Conservation of these responses may be a pre-requisite for the successful incorporation of new regulatory elements in this class of genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of promoter elements required for expression and induction by sucrose of the Arabidopsis COX5b-1 nuclear gene, encoding the zinc-binding subunit of cytochrome c oxidase

Loading next page...
1
 
/lp/springer_journal/characterization-of-promoter-elements-required-for-expression-and-Qgpv14XEdJ

References (59)

Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-008-9451-0
pmid
19125337
Publisher site
See Article on Publisher Site

Abstract

Arabidopsis COX5b-1 encodes an isoform of the zinc binding subunit 5b of mitochondrial cytochrome c oxidase. A promoter region required for expression and induction by sucrose of this gene was analyzed using plants stably transformed with mutagenized promoter fragments fused to the gus reporter gene. Promoter dependent expression is absolutely dependent on a G-box present at −228 from the translation start site. This element interacts in vitro and in vivo with transcription factors from the bZip family, preferentially with the abscisic acid-responsive element binding factor AREB2/ABF4. A region located upstream of the G-box (−333/−259) contains elements with the core sequence ATCATT and distalB-like sequences (CCACTTG) that are required for expression in vegetative tissues. These sequences bind different sets of proteins present in plant nuclear extracts and participate in induction by sucrose (ATCATT) and abscisic acid (distalB) of the COX5b-1 promoter. We propose that the COX5b-1 promoter has acquired novel regulatory mechanisms during evolution after gene duplication. These novel mechanisms have allowed the diversification of expression patterns, but also the conservation of some responses that, as induction by sucrose, are shared by COX5b-1 and other genes encoding components of the mitochondrial respiratory chain. Conservation of these responses may be a pre-requisite for the successful incorporation of new regulatory elements in this class of genes.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 1, 2009

There are no references for this article.