Characterization of porcine epidemic diarrhea virus infectivity in human embryonic kidney cells

Characterization of porcine epidemic diarrhea virus infectivity in human embryonic kidney cells Porcine epidemic diarrhea virus (PEDV), a causative agent of porcine epidemic diarrhea, causes economic loss in the global swine industry. Vero cell, an African green monkey kidney cell line, has been commonly used to isolate and propagate PEDV. However, since the production of interferon in these cells is defective, Vero cells are not the ideal cell type to study the molecular mechanisms of PEDV infection and the host antiviral innate immune response. In this study, we observed that human embryonic kidney 293 (HEK293) cells were susceptible to infection with PEDV vaccine strain CV777 (G1 subtype) and field isolate LNCT2 (G2 subtype). The one-step growth curve showed that the growth dynamics of PEDV in HEK293 cells was similar to that observed in Vero cells. Furthermore, we revealed that aminopeptidase N was involved in PEDV infection in HEK293 cells. Taken together, our findings suggest that HEK293 cells can be efficiently infected by PEDV, which might provide a useful tool for understanding the fundamental mechanisms of PEDV infection in vitro. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Characterization of porcine epidemic diarrhea virus infectivity in human embryonic kidney cells

Loading next page...
 
/lp/springer_journal/characterization-of-porcine-epidemic-diarrhea-virus-infectivity-in-dT2P8G0z1g
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-017-3369-2
Publisher site
See Article on Publisher Site

Abstract

Porcine epidemic diarrhea virus (PEDV), a causative agent of porcine epidemic diarrhea, causes economic loss in the global swine industry. Vero cell, an African green monkey kidney cell line, has been commonly used to isolate and propagate PEDV. However, since the production of interferon in these cells is defective, Vero cells are not the ideal cell type to study the molecular mechanisms of PEDV infection and the host antiviral innate immune response. In this study, we observed that human embryonic kidney 293 (HEK293) cells were susceptible to infection with PEDV vaccine strain CV777 (G1 subtype) and field isolate LNCT2 (G2 subtype). The one-step growth curve showed that the growth dynamics of PEDV in HEK293 cells was similar to that observed in Vero cells. Furthermore, we revealed that aminopeptidase N was involved in PEDV infection in HEK293 cells. Taken together, our findings suggest that HEK293 cells can be efficiently infected by PEDV, which might provide a useful tool for understanding the fundamental mechanisms of PEDV infection in vitro.

Journal

Archives of VirologySpringer Journals

Published: May 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off