Characterization of NS3 protease from an Egyptian HCV genotype 4a isolate

Characterization of NS3 protease from an Egyptian HCV genotype 4a isolate The role of the NS3 protease in HCV replication was demonstrated by the ability of a protease inhibitor cocktail (10 μg/ml) to abolish the induced cytopathic effect in RAW macrophages upon infection with Egyptian sera. The HCV protease gene was amplified from Egyptian sera by nested PCR and cloned downstream of the CMV promotor in a mammalian expression plasmid, which was then used to transform bacteria. Colonies carrying the gene in the correct orientation were subjected to large-scale plasmid purification followed by sequencing. Phylogenetic comparison of the sequence obtained with published sequences from different genotypes confirmed that our sequence belongs to genotype 4a. Of the other genotypes, the most closely related ones were from genotype 1. Multiple alignments of protease peptides showed that the catalytic triads and binding residues for substrate, Zn2+ and the NS4 cofactor are conserved among different isolates, including ours, and confirmed the closer homology between NS3 of genotypes 4 and 1. The HCV-protease-encoding construct was successfully transcribed in both mammalian cells and mice. Mouse antibodies produced against the protease-encoding-construct detected the 18-kDa enzyme in lysates of cells transfected with the construct by Western blotting, and in the media of infected cells by ELISA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals
Loading next page...
 
/lp/springer_journal/characterization-of-ns3-protease-from-an-egyptian-hcv-genotype-4a-vpDn2EaTag
Publisher
Springer Vienna
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-009-0500-z
Publisher site
See Article on Publisher Site

Abstract

The role of the NS3 protease in HCV replication was demonstrated by the ability of a protease inhibitor cocktail (10 μg/ml) to abolish the induced cytopathic effect in RAW macrophages upon infection with Egyptian sera. The HCV protease gene was amplified from Egyptian sera by nested PCR and cloned downstream of the CMV promotor in a mammalian expression plasmid, which was then used to transform bacteria. Colonies carrying the gene in the correct orientation were subjected to large-scale plasmid purification followed by sequencing. Phylogenetic comparison of the sequence obtained with published sequences from different genotypes confirmed that our sequence belongs to genotype 4a. Of the other genotypes, the most closely related ones were from genotype 1. Multiple alignments of protease peptides showed that the catalytic triads and binding residues for substrate, Zn2+ and the NS4 cofactor are conserved among different isolates, including ours, and confirmed the closer homology between NS3 of genotypes 4 and 1. The HCV-protease-encoding construct was successfully transcribed in both mammalian cells and mice. Mouse antibodies produced against the protease-encoding-construct detected the 18-kDa enzyme in lysates of cells transfected with the construct by Western blotting, and in the media of infected cells by ELISA.

Journal

Archives of VirologySpringer Journals

Published: Oct 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off