Characterization of Nicotiana tabacum plants expressing hybrid genes of cyanobacterial Δ9 or Δ12 acyl-lipid desaturases and thermostable lichenase

Characterization of Nicotiana tabacum plants expressing hybrid genes of cyanobacterial Δ9 or... We established transgenic lines of Nicotiana tabacum expressing hybrid genes of Synechocystis sp. PCC 6803 Δ12 (desA) acyllipid desaturase and Synechococcus vulcanus Δ9 (desC) acyllipid desaturase with or without sequence coding for transit peptide of Rubisco small subunit of Arabidopsis thaliana under control of a constitutive promoter. Reliable increase of linoleic acid portion (C18:2; Δ9,12) accompanied with decrease of α-linolenic acid (C18:3; Δ9,12,15) relative amount was detected for plants expressing hybrid desA::licBM3 gene. No reliable changes were detected in fatty acid profiles and unsaturation index of plants transformed with Δ9 desaturase gene desC::licBM3 lacking signals of intracellular targeting while expression of this gene with Arabidopsis thaliana Rubisco small subunit transit peptide sequence caused growth of C18:3 α-linolenic acid part simultaneously with reduction of C18:2 linoleic acid part, as well as increase of unsat-uration index. No changes in relative amount of Δ9-monounsaturated fatty acids were observed in any of studied lines. All plants expressing desaturase genes exhibited enhanced levels of superoxide dismutase (SOD) activity after cold treatment in contrast to control lines with suppressed SOD activity after cold treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Characterization of Nicotiana tabacum plants expressing hybrid genes of cyanobacterial Δ9 or Δ12 acyl-lipid desaturases and thermostable lichenase

Loading next page...
 
/lp/springer_journal/characterization-of-nicotiana-tabacum-plants-expressing-hybrid-genes-aCAvLyAg0T
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715030073
Publisher site
See Article on Publisher Site

Abstract

We established transgenic lines of Nicotiana tabacum expressing hybrid genes of Synechocystis sp. PCC 6803 Δ12 (desA) acyllipid desaturase and Synechococcus vulcanus Δ9 (desC) acyllipid desaturase with or without sequence coding for transit peptide of Rubisco small subunit of Arabidopsis thaliana under control of a constitutive promoter. Reliable increase of linoleic acid portion (C18:2; Δ9,12) accompanied with decrease of α-linolenic acid (C18:3; Δ9,12,15) relative amount was detected for plants expressing hybrid desA::licBM3 gene. No reliable changes were detected in fatty acid profiles and unsaturation index of plants transformed with Δ9 desaturase gene desC::licBM3 lacking signals of intracellular targeting while expression of this gene with Arabidopsis thaliana Rubisco small subunit transit peptide sequence caused growth of C18:3 α-linolenic acid part simultaneously with reduction of C18:2 linoleic acid part, as well as increase of unsat-uration index. No changes in relative amount of Δ9-monounsaturated fatty acids were observed in any of studied lines. All plants expressing desaturase genes exhibited enhanced levels of superoxide dismutase (SOD) activity after cold treatment in contrast to control lines with suppressed SOD activity after cold treatment.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 29, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off