Characterization of mouse Dactylaplasia mutations: a model for human ectrodactyly SHFM3

Characterization of mouse Dactylaplasia mutations: a model for human ectrodactyly SHFM3 SHFM3 is a limb malformation characterized by the absence of central digits. It has been shown that this condition is associated with tandem duplications of about 500 kb at 10q24. The Dactylaplasia mice display equivalent limb defects and the two corresponding alleles (Dac 1j and Dac 2j ) map in the region syntenic with the duplications in SHFM3. Dac 1j was shown to be associated with an insertion of an unspecified ETn-like mouse endogenous transposon upstream of the Fbxw4 gene. Dac 2j was also thought to be an insertion or a small inversion in intron 5 of Fbxw4, but the breakpoints and the exact molecular lesion have not yet been characterized. Here we report precise mapping and characterization of these alleles. We failed to identify any copy number differences within the SHFM3 orthologous genomic locus between Dac mutant and wild-type littermates, showing that the Dactylaplasia alleles are not associated with duplications of the region, in contrast with the described human SHFM3 cases. We further show that both Dac 1j and Dac 2j are caused by insertions of MusD retroelements that share 98% sequence identity. The differences between the nature of the human and mouse genomic abnormalities argue against models proposed so far that either envisioned SHFM3 as a local trisomy or Dac as a mutant allele of Fbxw4. Instead, both genetic conditions might lead to complex alterations of gene regulation mechanisms that would impair limb morphogenesis. Interestingly, the Dac 2j mutation occurs within a highly conserved element that may represent a regulatory sequence for a neighboring gene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Characterization of mouse Dactylaplasia mutations: a model for human ectrodactyly SHFM3

Loading next page...
 
/lp/springer_journal/characterization-of-mouse-dactylaplasia-mutations-a-model-for-human-4EQPURODMs
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-008-9106-0
Publisher site
See Article on Publisher Site

Abstract

SHFM3 is a limb malformation characterized by the absence of central digits. It has been shown that this condition is associated with tandem duplications of about 500 kb at 10q24. The Dactylaplasia mice display equivalent limb defects and the two corresponding alleles (Dac 1j and Dac 2j ) map in the region syntenic with the duplications in SHFM3. Dac 1j was shown to be associated with an insertion of an unspecified ETn-like mouse endogenous transposon upstream of the Fbxw4 gene. Dac 2j was also thought to be an insertion or a small inversion in intron 5 of Fbxw4, but the breakpoints and the exact molecular lesion have not yet been characterized. Here we report precise mapping and characterization of these alleles. We failed to identify any copy number differences within the SHFM3 orthologous genomic locus between Dac mutant and wild-type littermates, showing that the Dactylaplasia alleles are not associated with duplications of the region, in contrast with the described human SHFM3 cases. We further show that both Dac 1j and Dac 2j are caused by insertions of MusD retroelements that share 98% sequence identity. The differences between the nature of the human and mouse genomic abnormalities argue against models proposed so far that either envisioned SHFM3 as a local trisomy or Dac as a mutant allele of Fbxw4. Instead, both genetic conditions might lead to complex alterations of gene regulation mechanisms that would impair limb morphogenesis. Interestingly, the Dac 2j mutation occurs within a highly conserved element that may represent a regulatory sequence for a neighboring gene.

Journal

Mammalian GenomeSpringer Journals

Published: Apr 5, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off