Characterization of mouse Clpp protease cDNA, gene, and protein

Characterization of mouse Clpp protease cDNA, gene, and protein Mutations that cause accumulation or rapid degradation owing to protein misfolding are a frequent cause of inherited disease in humans. In Escherichia coli, Clpp protease is one of the components of the protein quality control system that handles misfolded proteins. In the present study, we have characterized the mouse Clpp cDNA sequence, the organization of the mouse gene, the chromosomal localization, and the tissue-specific expression pattern. Moreover, the cellular localization and processing of mouse Clpp was studied by overexpression in transfected eukaryotic cells. Our results indicate that mouse and human Clpp have similar roles, and they provide the molecular basis for establishing a Clpp knockout mouse and to study its phenotype, thereby shedding light on a possible role of Clpp in human disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals
Loading next page...
 
/lp/springer_journal/characterization-of-mouse-clpp-protease-cdna-gene-and-protein-Gln8G8xl0o
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010052
Publisher site
See Article on Publisher Site

Abstract

Mutations that cause accumulation or rapid degradation owing to protein misfolding are a frequent cause of inherited disease in humans. In Escherichia coli, Clpp protease is one of the components of the protein quality control system that handles misfolded proteins. In the present study, we have characterized the mouse Clpp cDNA sequence, the organization of the mouse gene, the chromosomal localization, and the tissue-specific expression pattern. Moreover, the cellular localization and processing of mouse Clpp was studied by overexpression in transfected eukaryotic cells. Our results indicate that mouse and human Clpp have similar roles, and they provide the molecular basis for establishing a Clpp knockout mouse and to study its phenotype, thereby shedding light on a possible role of Clpp in human disease.

Journal

Mammalian GenomeSpringer Journals

Published: Apr 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off