Characterization of infectious particles of grass carp reovirus by treatment with proteases

Characterization of infectious particles of grass carp reovirus by treatment with proteases Proteolytic cleavages play an important role in reovirus infection during entry into cells. The effects of protease digestion on the morphology, infectivity and polypeptide composition of grass carp reovirus (GCRV) were investigated. Following treatment with chymotrypsin, the different subviral particles of GCRV were isolated using density gradient centrifugation and examined by electron microscope (EM). Analysis of protein components revealed that the viral outer capsid was composed of VP5 and VP7. Of particular note, VP5 was found to primarily exist within virions as cleaved fragments, which was consistent with observations for its analogue μ1/μ1C, generated by autolysis of μ1 at the μ1N/μ1C junction for mammalian orthoreoviruses (MRVs). Meanwhile, both trypsin- and chymotrypsin-treated GCRV particles appeared to have an enhanced infectivity. Moreover, the corresponding assays between infectivity and protein component indicated that the enhancement of infectivity was correlated to the complete digestion of the outer capsid protein VP7 and partial cleavage of VP5. Overall, the results presented in this paper provided strong evidence that the proteins VP5 and VP7 of GCRV play an indispensable role in viral infection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Characterization of infectious particles of grass carp reovirus by treatment with proteases

Loading next page...
 
/lp/springer_journal/characterization-of-infectious-particles-of-grass-carp-reovirus-by-AFkzHjN0Ob
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-008-0048-3
Publisher site
See Article on Publisher Site

Abstract

Proteolytic cleavages play an important role in reovirus infection during entry into cells. The effects of protease digestion on the morphology, infectivity and polypeptide composition of grass carp reovirus (GCRV) were investigated. Following treatment with chymotrypsin, the different subviral particles of GCRV were isolated using density gradient centrifugation and examined by electron microscope (EM). Analysis of protein components revealed that the viral outer capsid was composed of VP5 and VP7. Of particular note, VP5 was found to primarily exist within virions as cleaved fragments, which was consistent with observations for its analogue μ1/μ1C, generated by autolysis of μ1 at the μ1N/μ1C junction for mammalian orthoreoviruses (MRVs). Meanwhile, both trypsin- and chymotrypsin-treated GCRV particles appeared to have an enhanced infectivity. Moreover, the corresponding assays between infectivity and protein component indicated that the enhancement of infectivity was correlated to the complete digestion of the outer capsid protein VP7 and partial cleavage of VP5. Overall, the results presented in this paper provided strong evidence that the proteins VP5 and VP7 of GCRV play an indispensable role in viral infection.

Journal

Archives of VirologySpringer Journals

Published: Apr 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off