Characterization of high-carbon high-chromium tool steel/low-carbon steel friction-welded joints for industrial tooling applications

Characterization of high-carbon high-chromium tool steel/low-carbon steel friction-welded joints... High-carbon high-chromium steel (D3) is commonly used for making cutting tools. It possesses higher abrasion resistance and higher degree of dimensional stability in heat treatment. It is high resistant to softening and medium resistant to decarburizing and can be nitrided. In addition to the use as cutting tools, they may be used as spindles, dies, sand blast nozzles, etc. In almost all such applications, friction welding is effectively implemented in welding of D3 steel with low-carbon steel, in order to reduce cost and enhance ductility. Mechanical testing is carried out to analyze the joint integrity and strength of D3 steel/low-carbon steel joints. Tensile strength was observed as 341.742 MPa, which is comparable to the tensile strengths of both the parent metals. Micro-hardness variation across the welded joint is found using Vickers hardness tester. Increase in micro-hardness is found in the D3 steel side 2 mm away from the weld interface. This is due to fully plasticized intermetallic compound formed near the interface, which is brittle in nature. Interfacial regions of the friction-welded joints were studied microscopically. Micrographs have been obtained using optical microscope and scanning electron microscope to study the bonding mechanism. Axial shortening, which is the result of flash formation by transfer of mass from the central region of joint, was also studied during the experimentation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Characterization of high-carbon high-chromium tool steel/low-carbon steel friction-welded joints for industrial tooling applications

Loading next page...
 
/lp/springer_journal/characterization-of-high-carbon-high-chromium-tool-steel-low-carbon-kg0HfQnrdi
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-018-1243-0
Publisher site
See Article on Publisher Site

Abstract

High-carbon high-chromium steel (D3) is commonly used for making cutting tools. It possesses higher abrasion resistance and higher degree of dimensional stability in heat treatment. It is high resistant to softening and medium resistant to decarburizing and can be nitrided. In addition to the use as cutting tools, they may be used as spindles, dies, sand blast nozzles, etc. In almost all such applications, friction welding is effectively implemented in welding of D3 steel with low-carbon steel, in order to reduce cost and enhance ductility. Mechanical testing is carried out to analyze the joint integrity and strength of D3 steel/low-carbon steel joints. Tensile strength was observed as 341.742 MPa, which is comparable to the tensile strengths of both the parent metals. Micro-hardness variation across the welded joint is found using Vickers hardness tester. Increase in micro-hardness is found in the D3 steel side 2 mm away from the weld interface. This is due to fully plasticized intermetallic compound formed near the interface, which is brittle in nature. Interfacial regions of the friction-welded joints were studied microscopically. Micrographs have been obtained using optical microscope and scanning electron microscope to study the bonding mechanism. Axial shortening, which is the result of flash formation by transfer of mass from the central region of joint, was also studied during the experimentation.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off