Characterization of glycoproteins expressing the blood group H type 1 epitope on human induced pluripotent stem (hiPS) cells

Characterization of glycoproteins expressing the blood group H type 1 epitope on human induced... Recently, we established two mouse monoclonal antibodies (R-10G and R-17F). The R-17F antibody (IgG1 subtype) exhibited a strong cytotoxic effect on hiPS/ES cells. The R-17F antigen isolated from a total lipid extract of hiPS (Tic) cells was identified as LNFP I (Fucα1–2Galβ1–3GlcNAcβ1–3Galβ1–4Glc). In the present study, R-17F binding proteins were isolated from hiPS (Tic) cell lysates with an affinity column of R-17F. They gave one major R-17F positive band around 250 kDa, and several minor bands between 150 kDa and 25 kDa. The former band was identified as podocalyxin by LC/MS/MS after SDS-PAGE. Hapten inhibition studies on R-17F binding to R-17F column-purified proteins with various synthetic oligosaccharides revealed that the blood group H type 1 triaose structure (Fucα1–2Galβ1–3GlcNAc) was the predominant epitope on all the R-17F binding proteins. These bands disappeared completely on digestion with α1–2 fucosidase, but not with α1–3/4 fucosidase. Upon PNGase F digestion, the R-17F positive band around and above 250 kDa did not show any change, while the minor bands between 150 kDa and 25 kDa disappeared completely, suggesting that the epitope is expressed on N-glycans in the latter and probably on O-glycans in the former. These results, together with those obtained in our previous studies on R-10G (Kawabe et al. Glycobiology, 23, 322–336 (2013)), indicated that both R-10G and R-17F epitopes are carried on the same podocalyxin molecule. The R-17F epitopes on these glycoproteins expressed on hiPS cells could be associated with the molecular mechanism underlying the carbohydrate-mediated cytotoxic activity of R-17F. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Glycoconjugate Journal Springer Journals

Characterization of glycoproteins expressing the blood group H type 1 epitope on human induced pluripotent stem (hiPS) cells

Loading next page...
 
/lp/springer_journal/characterization-of-glycoproteins-expressing-the-blood-group-h-type-1-8c1ZdLGG80
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Pathology
ISSN
0282-0080
eISSN
1573-4986
D.O.I.
10.1007/s10719-016-9710-2
Publisher site
See Article on Publisher Site

Abstract

Recently, we established two mouse monoclonal antibodies (R-10G and R-17F). The R-17F antibody (IgG1 subtype) exhibited a strong cytotoxic effect on hiPS/ES cells. The R-17F antigen isolated from a total lipid extract of hiPS (Tic) cells was identified as LNFP I (Fucα1–2Galβ1–3GlcNAcβ1–3Galβ1–4Glc). In the present study, R-17F binding proteins were isolated from hiPS (Tic) cell lysates with an affinity column of R-17F. They gave one major R-17F positive band around 250 kDa, and several minor bands between 150 kDa and 25 kDa. The former band was identified as podocalyxin by LC/MS/MS after SDS-PAGE. Hapten inhibition studies on R-17F binding to R-17F column-purified proteins with various synthetic oligosaccharides revealed that the blood group H type 1 triaose structure (Fucα1–2Galβ1–3GlcNAc) was the predominant epitope on all the R-17F binding proteins. These bands disappeared completely on digestion with α1–2 fucosidase, but not with α1–3/4 fucosidase. Upon PNGase F digestion, the R-17F positive band around and above 250 kDa did not show any change, while the minor bands between 150 kDa and 25 kDa disappeared completely, suggesting that the epitope is expressed on N-glycans in the latter and probably on O-glycans in the former. These results, together with those obtained in our previous studies on R-10G (Kawabe et al. Glycobiology, 23, 322–336 (2013)), indicated that both R-10G and R-17F epitopes are carried on the same podocalyxin molecule. The R-17F epitopes on these glycoproteins expressed on hiPS cells could be associated with the molecular mechanism underlying the carbohydrate-mediated cytotoxic activity of R-17F.

Journal

Glycoconjugate JournalSpringer Journals

Published: Jul 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off