Characterization of Fumarate Transport in Helicobacter pylori

Characterization of Fumarate Transport in Helicobacter pylori The fumarate transport system of the bacterium Helicobacter pylori was investigated employing radioactive tracer analysis. The transport of fumarate at micromolar concentrations was saturable with a K M of 220 ± 21 μm and V max of 54 ± 2 nmole/min/mg protein at 20°C, depended on temperature between 4 and 40°C, and was susceptible to inhibitors, suggesting the presence of one or more fumarate carriers. The release of fumarate from cells was also saturable with a K M of 464 ± 71 μm and V max of 22 ± 2 nmol/min/mg protein at 20°C. The rates of fumarate influx at millomolar concentrations increased linearly with permeant concentration, and depended on the age of the cells. The transport system was specific for dicarboxylic acids suggesting that fumarate is taken up via dicarboxylate transporters. Succinate and fumarate appeared to form an antiport system. The properties of fumarate transport were elucidated by investigating the effects of amino acids, monovalent cations, pH and potential inhibitors. The results provided evidence that influx and efflux of fumarate at low concentrations from H. pylori cells was a carrier-mediated secondary transport with the driving force supplied by the chemical gradient of the anion. The anaerobic C4-dicarboxylate transport protein identified in the genome of the bacterium appeared to be a good candidate for the fumarate transporter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Characterization of Fumarate Transport in Helicobacter pylori

Loading next page...
 
/lp/springer_journal/characterization-of-fumarate-transport-in-helicobacter-pylori-BHdQTJ0j8D
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900421
Publisher site
See Article on Publisher Site

Abstract

The fumarate transport system of the bacterium Helicobacter pylori was investigated employing radioactive tracer analysis. The transport of fumarate at micromolar concentrations was saturable with a K M of 220 ± 21 μm and V max of 54 ± 2 nmole/min/mg protein at 20°C, depended on temperature between 4 and 40°C, and was susceptible to inhibitors, suggesting the presence of one or more fumarate carriers. The release of fumarate from cells was also saturable with a K M of 464 ± 71 μm and V max of 22 ± 2 nmol/min/mg protein at 20°C. The rates of fumarate influx at millomolar concentrations increased linearly with permeant concentration, and depended on the age of the cells. The transport system was specific for dicarboxylic acids suggesting that fumarate is taken up via dicarboxylate transporters. Succinate and fumarate appeared to form an antiport system. The properties of fumarate transport were elucidated by investigating the effects of amino acids, monovalent cations, pH and potential inhibitors. The results provided evidence that influx and efflux of fumarate at low concentrations from H. pylori cells was a carrier-mediated secondary transport with the driving force supplied by the chemical gradient of the anion. The anaerobic C4-dicarboxylate transport protein identified in the genome of the bacterium appeared to be a good candidate for the fumarate transporter.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off