Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum

Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the... Homeodomain leucine zipper (HDZip) genes encode putative transcription factors that are unique to plants. A function in regulating processes that are specific for plants is postulated, such as responses to environmental cues and developmental signals. This is supported by a growing body of evidence resulting from studies of HDZip genes in a variety of species. In addition to the previously isolated CPHB-1 and -2 genes, this paper reports the isolation of members of five families of Craterostigma plantagineum homeobox leucine zipper genes (CPHB) via a yeast one-hybrid screening approach. Based on the sequence homology and protein interactions the encoded proteins (CPHB-3/4/5/6/7) were classified into HDZip class II and I genes. Homo- and heterodimerization of CPHB proteins within the same structurally related class has been demonstrated and the DNA-binding activity of CPHB proteins to two homeodomain recognition elements (HDE1 and HDE2) has been compared in yeast. All families of CPHB genes were modulated in their expression in response to dehydration in leaves and roots. CPHB-6 and CPHB-7 transcripts accumulated in leaves during early stages of dehydration and decreased after prolonged dehydration. Both transcripts were also induced in ABA-treated callus. CPHB-3/4/5 were down-regulated by dehydration in both leaves and roots. The results support the role of HDZips in regulating programs of gene expression in C. plantagineum that lead to desiccation tolerance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum

Loading next page...
 
/lp/springer_journal/characterization-of-five-novel-dehydration-responsive-homeodomain-1OMzqrEhqc
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1015501205303
Publisher site
See Article on Publisher Site

Abstract

Homeodomain leucine zipper (HDZip) genes encode putative transcription factors that are unique to plants. A function in regulating processes that are specific for plants is postulated, such as responses to environmental cues and developmental signals. This is supported by a growing body of evidence resulting from studies of HDZip genes in a variety of species. In addition to the previously isolated CPHB-1 and -2 genes, this paper reports the isolation of members of five families of Craterostigma plantagineum homeobox leucine zipper genes (CPHB) via a yeast one-hybrid screening approach. Based on the sequence homology and protein interactions the encoded proteins (CPHB-3/4/5/6/7) were classified into HDZip class II and I genes. Homo- and heterodimerization of CPHB proteins within the same structurally related class has been demonstrated and the DNA-binding activity of CPHB proteins to two homeodomain recognition elements (HDE1 and HDE2) has been compared in yeast. All families of CPHB genes were modulated in their expression in response to dehydration in leaves and roots. CPHB-6 and CPHB-7 transcripts accumulated in leaves during early stages of dehydration and decreased after prolonged dehydration. Both transcripts were also induced in ABA-treated callus. CPHB-3/4/5 were down-regulated by dehydration in both leaves and roots. The results support the role of HDZips in regulating programs of gene expression in C. plantagineum that lead to desiccation tolerance.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off