Characterization of fertility restoration in alloplasmic lines derived from hybridization of self-fertilized offspring of barley-wheat (Hordeum vulgare L. × Triticum aestivum L.) amphiploid with common wheat varieties Saratovskaya 29 and Pyrotrix 28

Characterization of fertility restoration in alloplasmic lines derived from hybridization of... The problems of fertility restoration in the progeny of barley-wheat hybrids (H. vulgare × T. aestivum) are explained by incompatibility between the cytoplasm of cultivated barley and the nuclear genome of common wheat. Appropriate models for studying these problems are alloplasmic lines that combine the cytoplasm of barley and the nuclear genome of wheat. In this work, the differences of fertility restoration in alloplasmic common wheat lines (H. vulgare)-T. aestivum were studied depending on the influence of wheat varieties Saratovskaya 29 (Sar29) and Pyrotrix 28 (Pyr28) used to produce these lines. The alloplasmic lines were created using hybrids between the 48-chromosome offspring (Amph1) of the barley-wheat amphiploid H. vulgare (ya-319) × T. aestivum (Sar29) and these wheat varieties. Backcrossing of the Amph1 (2n = 48) × Sar29 hybrid with the wheat variety Sar29 resulted in the complete sterility in the (H. vulgare)-Sar29 line, which suggests the incompatibility of the nuclear genome of the common wheat variety Sar29 with the cytoplasm of H. vulgare. Crossing of Amph1 (2n = 48) with Pyr28 resulted in the restoration of self-fertility in the hybrid with 2n = 44. In the alloplasmic lines (2n = 42) formed based on plants of the self-fertilized generations of this hybrid, the barley chromosomes were eliminated, and recombination between the nuclear genomes of the parental wheat varieties Sar29 and Pyr28 took place. Alloplasmic recombinant lines (H. vulgare)-T. aestivum with different levels of fertility were isolated. As was shown by the SSR analysis, differences in the fertility between these lines are determined by differences in the content of the genetic material from the wheat varieties Sar29 and Pyr28. The complete restoration of fertility in these alloplasmic recombinant lines is accompanied by the formation of a nuclear genome in which the genetic material of Pyr28 significantly prevails. The conclusion is made that the common wheat variety Pyrotrix 28 is a carrier of a gene (or genes), which determines the restoration of common wheat fertility on the cytoplasm of cultivated barley. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Characterization of fertility restoration in alloplasmic lines derived from hybridization of self-fertilized offspring of barley-wheat (Hordeum vulgare L. × Triticum aestivum L.) amphiploid with common wheat varieties Saratovskaya 29 and Pyrotrix 28

Loading next page...
 
/lp/springer_journal/characterization-of-fertility-restoration-in-alloplasmic-lines-derived-V1nwW6ZiEO
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795412120101
Publisher site
See Article on Publisher Site

Abstract

The problems of fertility restoration in the progeny of barley-wheat hybrids (H. vulgare × T. aestivum) are explained by incompatibility between the cytoplasm of cultivated barley and the nuclear genome of common wheat. Appropriate models for studying these problems are alloplasmic lines that combine the cytoplasm of barley and the nuclear genome of wheat. In this work, the differences of fertility restoration in alloplasmic common wheat lines (H. vulgare)-T. aestivum were studied depending on the influence of wheat varieties Saratovskaya 29 (Sar29) and Pyrotrix 28 (Pyr28) used to produce these lines. The alloplasmic lines were created using hybrids between the 48-chromosome offspring (Amph1) of the barley-wheat amphiploid H. vulgare (ya-319) × T. aestivum (Sar29) and these wheat varieties. Backcrossing of the Amph1 (2n = 48) × Sar29 hybrid with the wheat variety Sar29 resulted in the complete sterility in the (H. vulgare)-Sar29 line, which suggests the incompatibility of the nuclear genome of the common wheat variety Sar29 with the cytoplasm of H. vulgare. Crossing of Amph1 (2n = 48) with Pyr28 resulted in the restoration of self-fertility in the hybrid with 2n = 44. In the alloplasmic lines (2n = 42) formed based on plants of the self-fertilized generations of this hybrid, the barley chromosomes were eliminated, and recombination between the nuclear genomes of the parental wheat varieties Sar29 and Pyr28 took place. Alloplasmic recombinant lines (H. vulgare)-T. aestivum with different levels of fertility were isolated. As was shown by the SSR analysis, differences in the fertility between these lines are determined by differences in the content of the genetic material from the wheat varieties Sar29 and Pyr28. The complete restoration of fertility in these alloplasmic recombinant lines is accompanied by the formation of a nuclear genome in which the genetic material of Pyr28 significantly prevails. The conclusion is made that the common wheat variety Pyrotrix 28 is a carrier of a gene (or genes), which determines the restoration of common wheat fertility on the cytoplasm of cultivated barley.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Dec 16, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off