Characterization of DRGs, developmentally regulated GTP-binding proteins, from pea and Arabidopsis

Characterization of DRGs, developmentally regulated GTP-binding proteins, from pea and Arabidopsis Developmentally regulated GTP-binding proteins (DRGs) from animals and fungi are highly conserved but have no known function. Here we characterize DRGs from pea (PsDRG) and Arabidopsis (AtDRG). Amino acid sequences of AtDRG and PsDRG were 90% identical to each other and about 65% identical to human DRG. Genomic Southern blotting indicated that AtDRG and PsDRG probably are single-copy genes. PsDRG mRNA accumulated preferentially in growing organs (root apices, growing axillary buds and elongating stems) compared with their non-growing counterparts. At DRG mRNA was relatively abundant in Arabidopsis leaves, stems and siliques, less abundant in flowers and flower buds, and barely detectable in roots. Histone mRNAs are known to accumulate predominantly during S phase of the cell cycle and are markers for proliferating cells. The patterns of histone H2A mRNA accumulation in pea and Arabidopsis organs were very similar to those of DRG mRNAs. An antiserum raised against a PsDRG N-terminal fusion protein recognized 43 and 45 kDa proteins. PsDRG proteins were more abundant in growing pea roots and stems than in non-growing organs, but they were equally abundant in growing and dormant axillary buds. After differential centrifugation, PsDRG proteins were found primarily in the microsomal (150 000×g pellet) and soluble (150 000×g supernatant) cell fractions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of DRGs, developmentally regulated GTP-binding proteins, from pea and Arabidopsis

Loading next page...
 
/lp/springer_journal/characterization-of-drgs-developmentally-regulated-gtp-binding-l0fyYfCUDb
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006178710443
Publisher site
See Article on Publisher Site

Abstract

Developmentally regulated GTP-binding proteins (DRGs) from animals and fungi are highly conserved but have no known function. Here we characterize DRGs from pea (PsDRG) and Arabidopsis (AtDRG). Amino acid sequences of AtDRG and PsDRG were 90% identical to each other and about 65% identical to human DRG. Genomic Southern blotting indicated that AtDRG and PsDRG probably are single-copy genes. PsDRG mRNA accumulated preferentially in growing organs (root apices, growing axillary buds and elongating stems) compared with their non-growing counterparts. At DRG mRNA was relatively abundant in Arabidopsis leaves, stems and siliques, less abundant in flowers and flower buds, and barely detectable in roots. Histone mRNAs are known to accumulate predominantly during S phase of the cell cycle and are markers for proliferating cells. The patterns of histone H2A mRNA accumulation in pea and Arabidopsis organs were very similar to those of DRG mRNAs. An antiserum raised against a PsDRG N-terminal fusion protein recognized 43 and 45 kDa proteins. PsDRG proteins were more abundant in growing pea roots and stems than in non-growing organs, but they were equally abundant in growing and dormant axillary buds. After differential centrifugation, PsDRG proteins were found primarily in the microsomal (150 000×g pellet) and soluble (150 000×g supernatant) cell fractions.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off