Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath;CycB1;1 transcription and identification of putative regulatory proteins

Characterization of cis-acting element involved in cell cycle phase-independent activation of... Progression through the cell cycle is driven by cyclin-dependent kinases (CDKs) whose activity is controlled by regulatory subunits called cyclins. The expression of cyclins is subject to numerous controls at multiple levels, not least at the level of transcription. As a first step to unravel the mechanisms that regulate expression of B-cyclins in plants, we undertook the identification of the required promoter elements of the Arath;CycB1;1 gene. A detailed analysis of different promoter fragments consisted in analysing their ability to mediate cell cycle-dependent transcriptional oscillations of the gus reporter gene in transformed BY-2 cell lines. We showed that different promoter regions took part in transcriptional activation. Furthermore, 202 bp upstream of the ATG were sufficient to induce M-phase-specific expression. This region contains an 18 bp sequence including a Myb-binding core (AACGG) which is able to activate reporter gene without leading to M-phase-specific expression. Electrophoretic mobility shift assays showed that this 18 bp sequence specifically binds protein complexes from Arabidopsis cell suspension enriched either in G1 or G2 phase. Furthermore, the Myb core, AACGG, was characterized as necessary for the binding of proteins. DNA affinity purification of the complexes bound to the 18 bp sequence allowed the isolation of three different complexes and two proteins from these complexes were identified by mass spectrometry analyses. A new putative Myb transcription factor and a hypothetical protein, HYP containing with a leucine zipper and Myc-type dimerization domains were identified. When over-expressed in plants, HYP factor is able to trans-activate the expression of gus reporter gene downstream from the −202 promoter fragment as well as the endogenous CycB1;1 gene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath;CycB1;1 transcription and identification of putative regulatory proteins

Loading next page...
 
/lp/springer_journal/characterization-of-cis-acting-element-involved-in-cell-cycle-phase-tVBekgNWl8
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1016018711532
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial