Characterization of chloroplast psbA transformants of Chlamydomonas reinhardtii with impaired processing of a precursor of a photosystem II reaction center protein, D1

Characterization of chloroplast psbA transformants of Chlamydomonas reinhardtii with impaired... One of the photosystem II reaction center proteins, D1, is encoded by the psbA gene and is synthesized as a precursor form with a carboxyl-terminal extension that is subsequently cleaved between Ala-344 and Ser-345. We have generated three psbA transformants of the green alga Chlamydomonas reinhardtii in which Ala-344 or Ser-345 have been substituted with Pro or Glu (A344P, S345E, and S345P) to understand the effects of the amino acid substitutions on the processing of the precursor D1. S345E grew photoautotrophically and showed PSII activity like the wild type. However, A344P and S345P were unable to grow photoautotrophically and were significantly photosensitive. A344P was deficient in the processing of precursor D1 and in oxygen-evolving activity, but assembled photosystem II complex capable of charge separation. In contrast, both precursor and mature forms of D1 accumulated in S345P cells from the logarithmic phase and the cells evolved oxygen at 18% of wild-type level. However, S345P cells from the stationary phase contained mostly the mature D1 and showed a twofold increase in oxygen-evolving activity. The rate of processing of the accumulated pD1 was estimated to be about 100 times slower than in the wild type. It is therefore concluded that the functional oxygen-evolving complex is assembled when the precursor D1 is processed, albeit at a very low rate. These results suggest the functional significance of the amino acid residues at the processing site of the precursor D1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of chloroplast psbA transformants of Chlamydomonas reinhardtii with impaired processing of a precursor of a photosystem II reaction center protein, D1

Loading next page...
 
/lp/springer_journal/characterization-of-chloroplast-psba-transformants-of-chlamydomonas-26BJpNdrI5
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006377614863
Publisher site
See Article on Publisher Site

Abstract

One of the photosystem II reaction center proteins, D1, is encoded by the psbA gene and is synthesized as a precursor form with a carboxyl-terminal extension that is subsequently cleaved between Ala-344 and Ser-345. We have generated three psbA transformants of the green alga Chlamydomonas reinhardtii in which Ala-344 or Ser-345 have been substituted with Pro or Glu (A344P, S345E, and S345P) to understand the effects of the amino acid substitutions on the processing of the precursor D1. S345E grew photoautotrophically and showed PSII activity like the wild type. However, A344P and S345P were unable to grow photoautotrophically and were significantly photosensitive. A344P was deficient in the processing of precursor D1 and in oxygen-evolving activity, but assembled photosystem II complex capable of charge separation. In contrast, both precursor and mature forms of D1 accumulated in S345P cells from the logarithmic phase and the cells evolved oxygen at 18% of wild-type level. However, S345P cells from the stationary phase contained mostly the mature D1 and showed a twofold increase in oxygen-evolving activity. The rate of processing of the accumulated pD1 was estimated to be about 100 times slower than in the wild type. It is therefore concluded that the functional oxygen-evolving complex is assembled when the precursor D1 is processed, albeit at a very low rate. These results suggest the functional significance of the amino acid residues at the processing site of the precursor D1.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off