Characterization of Butyrate Uptake by Nontransformed Intestinal Epithelial Cell Lines

Characterization of Butyrate Uptake by Nontransformed Intestinal Epithelial Cell Lines Butyrate (BT) is one of the main end products of anaerobic bacterial fermentation of dietary fiber within the human colon. Among its recognized effects, BT inhibits colon carcinogenesis. Our aim was to characterize uptake of BT by two nontransformed intestinal epithelial cell lines: rat small intestinal epithelial (IEC-6) and fetal human colonic epithelial (FHC) cells. Uptake of 14C-BT by IEC-6 cells was (1) time- and concentration-dependent; (2) pH-dependent; (3) Na+-, Cl−- and energy-dependent; (4) inhibited by BT structural analogues; (5) sensitive to monocarboxylate transporter 1 (MCT1) inhibitors; and (6) insensitive to DIDS and amiloride. IEC-6 cells express both MCT1 and Na+-coupled monocarboxylate transporter 1 (SMCT1) mRNA. We conclude that 14C-BT uptake by IEC-6 cells mainly involves MCT1, with a small contribution of SMCT1. Acute exposure to ethanol, acetaldehyde, indomethacin, resveratrol and quercetin reduced 14C-BT uptake. Chronic exposure to resveratrol and quercetin reduced 14C-BT uptake but had no effect on either MCT1 or SMCT1 mRNA levels. Uptake of 14C-BT by FHC cells was time- and concentration-dependent but pH-, Na+-, Cl−- and energy-independent and insensitive to BT structural analogues and MCT1 inhibitors. Although MCT1 (but not SMCT1) mRNA expression was found in FHC cells, the characteristics of 14C-BT uptake by FHC cells did not support either MCT1 or SMCT1 involvement. In conclusion, uptake characteristics of 14C-BT differ between IEC-6 and FHC cells. IEC-6 cells demonstrate MCT1- and SMCT1-mediated transport, while FHC cells do not. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Characterization of Butyrate Uptake by Nontransformed Intestinal Epithelial Cell Lines

Loading next page...
 
/lp/springer_journal/characterization-of-butyrate-uptake-by-nontransformed-intestinal-4yE9hSvbYF
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-011-9340-3
Publisher site
See Article on Publisher Site

Abstract

Butyrate (BT) is one of the main end products of anaerobic bacterial fermentation of dietary fiber within the human colon. Among its recognized effects, BT inhibits colon carcinogenesis. Our aim was to characterize uptake of BT by two nontransformed intestinal epithelial cell lines: rat small intestinal epithelial (IEC-6) and fetal human colonic epithelial (FHC) cells. Uptake of 14C-BT by IEC-6 cells was (1) time- and concentration-dependent; (2) pH-dependent; (3) Na+-, Cl−- and energy-dependent; (4) inhibited by BT structural analogues; (5) sensitive to monocarboxylate transporter 1 (MCT1) inhibitors; and (6) insensitive to DIDS and amiloride. IEC-6 cells express both MCT1 and Na+-coupled monocarboxylate transporter 1 (SMCT1) mRNA. We conclude that 14C-BT uptake by IEC-6 cells mainly involves MCT1, with a small contribution of SMCT1. Acute exposure to ethanol, acetaldehyde, indomethacin, resveratrol and quercetin reduced 14C-BT uptake. Chronic exposure to resveratrol and quercetin reduced 14C-BT uptake but had no effect on either MCT1 or SMCT1 mRNA levels. Uptake of 14C-BT by FHC cells was time- and concentration-dependent but pH-, Na+-, Cl−- and energy-independent and insensitive to BT structural analogues and MCT1 inhibitors. Although MCT1 (but not SMCT1) mRNA expression was found in FHC cells, the characteristics of 14C-BT uptake by FHC cells did not support either MCT1 or SMCT1 involvement. In conclusion, uptake characteristics of 14C-BT differ between IEC-6 and FHC cells. IEC-6 cells demonstrate MCT1- and SMCT1-mediated transport, while FHC cells do not.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off