Characterization of ATP-Sensitive Potassium Channels Functionally Expressed in Pituitary GH3 Cells

Characterization of ATP-Sensitive Potassium Channels Functionally Expressed in Pituitary GH3 Cells ATP-sensitive K+ (KATP) channels have been characterized in pituitary GH3 cells with the aid of the patch-clamp technique. In the cell-attached configuration, the presence of diazoxide (100 μm) revealed the presence of glibenclamide-sensitive KATP channel exhibiting a unitary conductance of 74 pS. Metabolic inhibition induced by 2,4-dinitrophenol (1 mm) or sodium cyanide (300 μm) increased KATP channel activity, while nicorandil (100 μm) had no effect on it. In the inside-out configuration, Mg-ATP applied intracellularly suppressed the activity of KATP channels in a concentration-dependent manner with an IC50 value of 30 μm. The activation of phospholipase A2 caused by mellitin (1 μm) was found to enhance KATP channel activity and further application of aristolochic acid (30 μm) reduced the mellitin-induced increase in channel activity. The challenging of cells with 4,4′-dithiodipyridine (100 μm) also induced KATP channel activity. Diazoxide, mellitin and 4,4′-dithiodipyridine activated the KATP channels that exhibited similar channel-opening kinetics. In addition, under current-clamp conditions, the application of diazoxide (100 μm) hyperpolarized the membrane potential and reduced the firing rate of spontaneous action potentials. The present study clearly indicates that KATP channels similar to those seen in pancreatic β cells are functionally expressed in GH3 cells. In addition to the presence of Ca2+-activated K+ channels, KATP channels found in these cells could thus play an important role in controlling hormonal release by regulating the membrane potential. The Journal of Membrane Biology Springer Journals

Characterization of ATP-Sensitive Potassium Channels Functionally Expressed in Pituitary GH3 Cells

Loading next page...
Copyright © Inc. by 2000 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial