Characterization of Arabidopsis Tubby-like proteins and redundant function of AtTLP3 and AtTLP9 in plant response to ABA and osmotic stress

Characterization of Arabidopsis Tubby-like proteins and redundant function of AtTLP3 and AtTLP9... Tubby and Tubby-like proteins (TLPs) play essential roles in the development and function of mammal neuronal cells. In addition to the conserved carboxyl (C)-terminal Tubby domain, which is required for their plasma membrane (PM) tethering, plant TLPs also possess an amino (N)-terminal F-box domain to interact with specific Arabidopsis Skp1-like (ASK) proteins as functional SCF-type E3 ligases. Here, we report the molecular characterization of Arabidopsis TLPs (AtTLPs). β-Glucuronidase staining showed overlapped but distinct expression patterns of AtTLPs in Arabidopsis. Yeast two-hybrid assays further revealed that AtTLP1, AtTLP3, AtTLP6, AtTLP7, AtTLP9, AtTLP10 and AtTLP11 all interacted with specific ASKs, but AtTLP2, AtTLP5 and AtTLP8 did not. Subcellular localization observations in both Arabidopsis protoplasts and tobacco pollen tubes indicated that all GFP-AtTLP fusion proteins, except GFP-AtTLP8 which lacks the conserved phosphatidylinositol 4,5-bisphosphate binding sites, were targeted to the PM. Detailed studies on AtTLP3 demonstrated that AtTLP3 is a PM-tethered PIP2 binding protein which functions redundantly with AtTLP9 in abscisic acid (ABA)- and osmotic stress-mediated seed germination. Our results suggest that AtTLPs possibly work in multiple physiological and developmental processes in Arabidopsis, and AtTLP3 is also involved in ABA signaling pathway like AtTLP9 during seed germination and early seedling growth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of Arabidopsis Tubby-like proteins and redundant function of AtTLP3 and AtTLP9 in plant response to ABA and osmotic stress

Loading next page...
 
/lp/springer_journal/characterization-of-arabidopsis-tubby-like-proteins-and-redundant-WAFfBTUJgI
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0241-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial