Characterization of Arabidopsis thaliana genes encoding functional homologues of the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis

Characterization of Arabidopsis thaliana genes encoding functional homologues of the yeast metal... The Arabidopsis thaliana genome contains two nearly identical genes which encode proteins showing similarity with the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis. One of these genes (AtCOX19-1) produces two transcript forms that arise from an alternative splicing event and encode proteins with different N-terminal portions. Both AtCOX19 isoforms are imported into mitochondria in vitro and are found attached to the inner membrane facing the intermembrane space. The smaller AtCOX19-1 isoform, but not the larger one, is able to restore growth on non-fermentable carbon sources when expressed in a yeast cox19 null mutant. AtCOX19 transcript levels increase by treatment with copper or compounds that produce reactive oxygen species. Young roots and anthers are highly stained in AtCOX19-1::GUS plants. Expression in leaves is only observed when cuts are produced, suggesting an induction by wounding. Infection of plants with the pathogenic bacterium Pseudomonas syringae pv. tomato also induces AtCOX19 gene expression. The results suggest that AtCOX19 genes encode functional homologues of the yeast metal chaperone. Induction by biotic and abiotic stress factors may indicate a relevant role of this protein in the biogenesis of cytochrome c oxidase to replace damaged forms of the enzyme or a more general role in the response of plants to stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of Arabidopsis thaliana genes encoding functional homologues of the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis

Loading next page...
 
/lp/springer_journal/characterization-of-arabidopsis-thaliana-genes-encoding-functional-hqBeuTO6al
Publisher
Springer Netherlands
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9224-1
Publisher site
See Article on Publisher Site

Abstract

The Arabidopsis thaliana genome contains two nearly identical genes which encode proteins showing similarity with the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis. One of these genes (AtCOX19-1) produces two transcript forms that arise from an alternative splicing event and encode proteins with different N-terminal portions. Both AtCOX19 isoforms are imported into mitochondria in vitro and are found attached to the inner membrane facing the intermembrane space. The smaller AtCOX19-1 isoform, but not the larger one, is able to restore growth on non-fermentable carbon sources when expressed in a yeast cox19 null mutant. AtCOX19 transcript levels increase by treatment with copper or compounds that produce reactive oxygen species. Young roots and anthers are highly stained in AtCOX19-1::GUS plants. Expression in leaves is only observed when cuts are produced, suggesting an induction by wounding. Infection of plants with the pathogenic bacterium Pseudomonas syringae pv. tomato also induces AtCOX19 gene expression. The results suggest that AtCOX19 genes encode functional homologues of the yeast metal chaperone. Induction by biotic and abiotic stress factors may indicate a relevant role of this protein in the biogenesis of cytochrome c oxidase to replace damaged forms of the enzyme or a more general role in the response of plants to stress.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 22, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off