Characterization of an ATP-dependent type I DNA ligase from Arabidopsis thaliana

Characterization of an ATP-dependent type I DNA ligase from Arabidopsis thaliana Here we report the purification and biochemical characterization of recombinant Arabidopsis thaliana DNA ligase I. We show that this ligase requires ATP as a source for adenylation. The calculated K m [ATP] for ligation is 3 μM. This enzyme is able to ligate nicks in oligo(dT)/poly(dA) and oligo(rA)/poly(dT) substrates, but not in oligo(dT)/poly(rA) substrates. Double-stranded DNAs with cohesive or blunt ends are also good substrates for the ligase. These biochemical features of the purified enzyme show the characteristics typical of a type I DNA ligase. Furthermore, this DNA ligase is able to perform the reverse reaction (relaxation of supercoiled DNA) in an AMP-dependent and PPi-stimulated manner. Plant Molecular Biology Springer Journals

Characterization of an ATP-dependent type I DNA ligase from Arabidopsis thaliana

Loading next page...
Kluwer Academic Publishers
Copyright © 2001 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial