Characterization of all the subunits of replication factor C from a higher plant, rice (Oryza sativa L.), and their relation to development

Characterization of all the subunits of replication factor C from a higher plant, rice (Oryza... Replication factor C (RFC), which is composed of five subunits, is an important factor involved in DNA replication and repair mechanisms. Following previous studies on the RFC3 homologue from rice (Oryza sativa L. cv. Nipponbare) (OsRFC3), we succeeded in isolating and characterizing one large and three small subunits of RFC homologues from the same rice species and termed them OsRFC1, OsRFC2, OsRFC4 and OsRFC5. The plant was found to have all RFC subunits known in yeasts, human and other eukaryotes. The open reading frames of OsRFCs encoded a predicted product of 1021 amino acid residues with a molecular mass of 110.8 kDa for OsRFC1, 339 amino acid residues with a molecular mass of 37.4 kDa for OsRFC2, 335 amino acid residues with a molecular mass of 36.8 kDa for OsRFC4, and 354 amino acid residues with a molecular mass of 40.5 kDa for OsRFC5. All the OsRFC subunits have highly conserved amino acid motifs among RFC proteins, RFC box, and an unrooted phylogenetic tree shows each OsRFC subunit belongs to each RFC subunit group. These subunits showed differences in their expression patterns among tissues. The transcripts of OsRFCs were expressed strongly in the proliferating tissue, the shoot apical meristem (SAM), and very weakly in the mature leaves which have no proliferating tissues. However, in young leaves and flag leaves, tissue-specific expression of OsRFC3 and OsRFC4 was shown. On the other hand, cell cycle arrest by cell cycle inhibitors resulted in significant differences in OsRFC expression patterns. These results suggest the functional differences of each OsRFC subunit in tissues and the plant cell cycle. The roles of these molecules in plant DNA replication and DNA repair are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of all the subunits of replication factor C from a higher plant, rice (Oryza sativa L.), and their relation to development

Loading next page...
 
/lp/springer_journal/characterization-of-all-the-subunits-of-replication-factor-c-from-a-hwyYzqQBpH
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000009258.04711.62
Publisher site
See Article on Publisher Site

Abstract

Replication factor C (RFC), which is composed of five subunits, is an important factor involved in DNA replication and repair mechanisms. Following previous studies on the RFC3 homologue from rice (Oryza sativa L. cv. Nipponbare) (OsRFC3), we succeeded in isolating and characterizing one large and three small subunits of RFC homologues from the same rice species and termed them OsRFC1, OsRFC2, OsRFC4 and OsRFC5. The plant was found to have all RFC subunits known in yeasts, human and other eukaryotes. The open reading frames of OsRFCs encoded a predicted product of 1021 amino acid residues with a molecular mass of 110.8 kDa for OsRFC1, 339 amino acid residues with a molecular mass of 37.4 kDa for OsRFC2, 335 amino acid residues with a molecular mass of 36.8 kDa for OsRFC4, and 354 amino acid residues with a molecular mass of 40.5 kDa for OsRFC5. All the OsRFC subunits have highly conserved amino acid motifs among RFC proteins, RFC box, and an unrooted phylogenetic tree shows each OsRFC subunit belongs to each RFC subunit group. These subunits showed differences in their expression patterns among tissues. The transcripts of OsRFCs were expressed strongly in the proliferating tissue, the shoot apical meristem (SAM), and very weakly in the mature leaves which have no proliferating tissues. However, in young leaves and flag leaves, tissue-specific expression of OsRFC3 and OsRFC4 was shown. On the other hand, cell cycle arrest by cell cycle inhibitors resulted in significant differences in OsRFC expression patterns. These results suggest the functional differences of each OsRFC subunit in tissues and the plant cell cycle. The roles of these molecules in plant DNA replication and DNA repair are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off