Characterization of a photonic active integrated antenna using a direct off-air transmission technique

Characterization of a photonic active integrated antenna using a direct off-air transmission... This article presents a characterization study of a state-of-the-art 40 GHz mode-locked laser using a hybrid integrated microstrip patch antenna and bias-T circuit. A passive mode-locking range of 300 MHz is measured using this technique by tuning the gain and saturable absorber bias values for a maximum wireless distance of 15 cm. The passive mode-locking signal is detected by a direct off-air method from a photonic active integrated antenna. This signal can be used as a remote local oscillator to downconvert incoming signals as part of a bidirectional system for in-building/campus wide remote antenna units in next generation millimetre-wave radio-over-fibre systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Characterization of a photonic active integrated antenna using a direct off-air transmission technique

Loading next page...
 
/lp/springer_journal/characterization-of-a-photonic-active-integrated-antenna-using-a-mQlv2FOEGx
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-014-0458-y
Publisher site
See Article on Publisher Site

Abstract

This article presents a characterization study of a state-of-the-art 40 GHz mode-locked laser using a hybrid integrated microstrip patch antenna and bias-T circuit. A passive mode-locking range of 300 MHz is measured using this technique by tuning the gain and saturable absorber bias values for a maximum wireless distance of 15 cm. The passive mode-locking signal is detected by a direct off-air method from a photonic active integrated antenna. This signal can be used as a remote local oscillator to downconvert incoming signals as part of a bidirectional system for in-building/campus wide remote antenna units in next generation millimetre-wave radio-over-fibre systems.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Jul 17, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off