Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2 +-dependent calmodulin-binding domains

Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2... Ca2+ and calmodulin (CaM), a key Ca2+ sensor in all eukaryotes, have been implicated in defense responses in plants. To elucidate the role of Ca2+ and CaM in defense signaling, we used 35S-labeled CaM to screen expression libraries prepared from tissues that were either treated with an elicitor derived from Phytophthora megasperma or infected with Pseudomonas syringae pv. tabaci. Nineteen cDNAs that encode the same protein, pathogen-induced CaM-binding protein (PICBP), were isolated. The PICBP fusion proteins bound 35S-CaM, horseradish peroxidase-labeled CaM and CaM-Sepharose in the presence of Ca2+ whereas EGTA, a Ca2+ chelator, abolished binding, confirming that PICBP binds CaM in a Ca2+-dependent manner. Using a series of bacterially expressed truncated versions of PICBP, four CaM-binding domains, with a potential CaM-binding consensus sequence of WSNLKKVILLKRFVKSL, were identified. The deduced PICBP protein sequence is rich in leucine residues and contains three classes of repeats. The PICBP gene is differentially expressed in tissues with the highest expression in stem. The expression of PICBP in Arabidopsis was induced in response to avirulent Pseudomonas syringae pv. tomato carrying avrRpm1. Furthermore, PICBP is constitutively expressed in the Arabidopsis accelerated cell death2-2 mutant. The expression of PICBP in bean leaves was also induced after inoculation with avirulent and non-pathogenic bacterial strains. In addition, the hrp1 mutant of Pseudomonas syringae pv. tabaci and inducers of plant defense such as salicylic acid, hydrogen peroxide and a fungal elicitor induced PICBP expression in bean. Our data suggest a role for PICBP in Ca2+-mediated defense signaling and cell-death. Furthermore, PICBP is the first identified CBP in eukaryotes with four Ca2+-dependent CaM-binding domains. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2 +-dependent calmodulin-binding domains

Loading next page...
 
/lp/springer_journal/characterization-of-a-pathogen-induced-calmodulin-binding-protein-EA1l0uxpI0
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1023993713849
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial