Characterization of a P-type Copper-Stimulated ATPase from Mouse Liver

Characterization of a P-type Copper-Stimulated ATPase from Mouse Liver Mouse liver microsomes treated with octylthioglucoside (OTG-microsomes) were examined for copper-stimulated ATPase activity. The activity was about 1 μmol Pi/mg protein/hr under optimal conditions [300 mm KCl, 3 mm MgSO4, 10 mm GSH, 0.5 μm CuSO4, 3 mm ATP and 50 mm acetate buffer at pH5.0]. A reducing agent such as GSH or dithiothreitol was required for the activity, and removal of Cu+ from the reaction mixture by bathocuporinedisulfonate resulted in a complete loss of copper-stimulated ATPase activity. Vanadate inhibited the copper-stimulated ATPase activity. The OTG-microsomes were phosphorylated in a hydroxylamine-sensitive and copper-stimulated way. Iron used instead of copper also stimulated both ATPase and phosphorylation. These results suggest that microsomes from mouse liver contain copper/iron-stimulated P-type ATPase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Characterization of a P-type Copper-Stimulated ATPase from Mouse Liver

Loading next page...
 
/lp/springer_journal/characterization-of-a-p-type-copper-stimulated-atpase-from-mouse-liver-RJcTtt5nAo
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900533
Publisher site
See Article on Publisher Site

Abstract

Mouse liver microsomes treated with octylthioglucoside (OTG-microsomes) were examined for copper-stimulated ATPase activity. The activity was about 1 μmol Pi/mg protein/hr under optimal conditions [300 mm KCl, 3 mm MgSO4, 10 mm GSH, 0.5 μm CuSO4, 3 mm ATP and 50 mm acetate buffer at pH5.0]. A reducing agent such as GSH or dithiothreitol was required for the activity, and removal of Cu+ from the reaction mixture by bathocuporinedisulfonate resulted in a complete loss of copper-stimulated ATPase activity. Vanadate inhibited the copper-stimulated ATPase activity. The OTG-microsomes were phosphorylated in a hydroxylamine-sensitive and copper-stimulated way. Iron used instead of copper also stimulated both ATPase and phosphorylation. These results suggest that microsomes from mouse liver contain copper/iron-stimulated P-type ATPase.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off