Characterization of a legumain/vacuolar processing enzyme and YVADase activity in Papaver pollen

Characterization of a legumain/vacuolar processing enzyme and YVADase activity in Papaver pollen Legumains, also known as Vacuolar Processing Enzymes (VPEs) have received considerable attention recently, as they share structural properties with mammalian caspase-1 and exhibit YVADase/caspase-1-like cleavage activity. Although many legumains have been cloned, knowledge about their detailed characteristics and intracellular localization is relatively limited. We previously identified several caspase-like activities activated by self-incompatibility (SI) in pollen; a DEVDase was required for programmed cell death (PCD), but YVADase was not (Bosch and Franklin-Tong in Proc Natl Acad Sci USA 104:18327–18332, 2007; Thomas and Franklin-Tong in Nature 429:305–309, 2004). Here we report identification of a legumain/VPE from Papaver rhoeas pollen (PrVPE1) that binds to the DEVD tetrapeptide, a signature substrate for caspase-3. A detailed characterization of the recombinant PrVPE1 cleavage activity revealed that, like other VPEs, it has YVADase activity and requires an acidic pH for activity. Unlike other legumain/VPEs, it also exhibits DEVDase and IETDase activities and apparently does not require processing for activity. The pollen-expressed PrVPE1 localizes to a reticulate compartment resembling the vacuole. Examination of YVADase activity using live-cell imaging of pollen tubes revealed YVADase activity in mitochondria of growing pollen tubes. The unexpected features of PrVPE1, together with evidence for YVADase activity in plant mitochondria, indicate that VPEs, YVADases, their localization and functions in plant cells merit further investigation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of a legumain/vacuolar processing enzyme and YVADase activity in Papaver pollen

Loading next page...
 
/lp/springer_journal/characterization-of-a-legumain-vacuolar-processing-enzyme-and-yvadase-zcYcAiP2jZ
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9681-9
Publisher site
See Article on Publisher Site

Abstract

Legumains, also known as Vacuolar Processing Enzymes (VPEs) have received considerable attention recently, as they share structural properties with mammalian caspase-1 and exhibit YVADase/caspase-1-like cleavage activity. Although many legumains have been cloned, knowledge about their detailed characteristics and intracellular localization is relatively limited. We previously identified several caspase-like activities activated by self-incompatibility (SI) in pollen; a DEVDase was required for programmed cell death (PCD), but YVADase was not (Bosch and Franklin-Tong in Proc Natl Acad Sci USA 104:18327–18332, 2007; Thomas and Franklin-Tong in Nature 429:305–309, 2004). Here we report identification of a legumain/VPE from Papaver rhoeas pollen (PrVPE1) that binds to the DEVD tetrapeptide, a signature substrate for caspase-3. A detailed characterization of the recombinant PrVPE1 cleavage activity revealed that, like other VPEs, it has YVADase activity and requires an acidic pH for activity. Unlike other legumain/VPEs, it also exhibits DEVDase and IETDase activities and apparently does not require processing for activity. The pollen-expressed PrVPE1 localizes to a reticulate compartment resembling the vacuole. Examination of YVADase activity using live-cell imaging of pollen tubes revealed YVADase activity in mitochondria of growing pollen tubes. The unexpected features of PrVPE1, together with evidence for YVADase activity in plant mitochondria, indicate that VPEs, YVADases, their localization and functions in plant cells merit further investigation.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 26, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off