Characterization of a Functionally Expressed Stretch-activated BKca Channel Cloned from Chick Ventricular Myocytes

Characterization of a Functionally Expressed Stretch-activated BKca Channel Cloned from Chick... We have characterized electrophysiological and pharmacological properties of a stretch-activated BKca channel (SAKcaC) that was cloned from cultured chick ventricular myocytes (CCVM) and expressed in chinese hamster ovary cells (CHO) using the patch-clamp technique. Our results indicate that the cloned SAKcaC keeps most of the key properties of the native SAKcaC in CCVM, such as conductance, ion selectivity, pressure-, voltage- and Ca2+-dependencies. However, there was a slight difference between these channels in the effects of channel blockers, charybdotoxin (CTX) and gadolinium (Gd3+). The native SAKcaC was blocked in an all-or-none fashion characterized as the slow blockade, whereas the conductance of the cloned SAKcaC was gradually decreased with the blockers’ concentration, without noticeable blocking noise. As the involvement of some auxiliary components was suspected in this difference, we cloned a BK β-subunit from CCVM and coexpressed it with the cloned SAKcaC in CHO cells to examine its effects on the SAKcaC. Although the pharmacological properties of the cloned SAKcaC turned out to be very similar to the native one by the coexpression, it also significantly altered the key characteristics of SAKcaC, such as voltage- and Ca2+-dependencies. Therefore we concluded that the native SAKca in CCVM does not interact with the corresponding endogenous β-subunit. The difference in pharmacological properties between the expressed SAKcaC in CHO and the native one in CCVM suggests that the native SAKca in CCVM is modulated by unknown auxiliary components. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Characterization of a Functionally Expressed Stretch-activated BKca Channel Cloned from Chick Ventricular Myocytes

Loading next page...
 
/lp/springer_journal/characterization-of-a-functionally-expressed-stretch-activated-bkca-JDh6F3Jsk3
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-0637-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial