Characterization of a Functionally Expressed Stretch-activated BKca Channel Cloned from Chick Ventricular Myocytes

Characterization of a Functionally Expressed Stretch-activated BKca Channel Cloned from Chick... We have characterized electrophysiological and pharmacological properties of a stretch-activated BKca channel (SAKcaC) that was cloned from cultured chick ventricular myocytes (CCVM) and expressed in chinese hamster ovary cells (CHO) using the patch-clamp technique. Our results indicate that the cloned SAKcaC keeps most of the key properties of the native SAKcaC in CCVM, such as conductance, ion selectivity, pressure-, voltage- and Ca2+-dependencies. However, there was a slight difference between these channels in the effects of channel blockers, charybdotoxin (CTX) and gadolinium (Gd3+). The native SAKcaC was blocked in an all-or-none fashion characterized as the slow blockade, whereas the conductance of the cloned SAKcaC was gradually decreased with the blockers’ concentration, without noticeable blocking noise. As the involvement of some auxiliary components was suspected in this difference, we cloned a BK β-subunit from CCVM and coexpressed it with the cloned SAKcaC in CHO cells to examine its effects on the SAKcaC. Although the pharmacological properties of the cloned SAKcaC turned out to be very similar to the native one by the coexpression, it also significantly altered the key characteristics of SAKcaC, such as voltage- and Ca2+-dependencies. Therefore we concluded that the native SAKca in CCVM does not interact with the corresponding endogenous β-subunit. The difference in pharmacological properties between the expressed SAKcaC in CHO and the native one in CCVM suggests that the native SAKca in CCVM is modulated by unknown auxiliary components. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Characterization of a Functionally Expressed Stretch-activated BKca Channel Cloned from Chick Ventricular Myocytes

Loading next page...
 
/lp/springer_journal/characterization-of-a-functionally-expressed-stretch-activated-bkca-JDh6F3Jsk3
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-0637-8
Publisher site
See Article on Publisher Site

Abstract

We have characterized electrophysiological and pharmacological properties of a stretch-activated BKca channel (SAKcaC) that was cloned from cultured chick ventricular myocytes (CCVM) and expressed in chinese hamster ovary cells (CHO) using the patch-clamp technique. Our results indicate that the cloned SAKcaC keeps most of the key properties of the native SAKcaC in CCVM, such as conductance, ion selectivity, pressure-, voltage- and Ca2+-dependencies. However, there was a slight difference between these channels in the effects of channel blockers, charybdotoxin (CTX) and gadolinium (Gd3+). The native SAKcaC was blocked in an all-or-none fashion characterized as the slow blockade, whereas the conductance of the cloned SAKcaC was gradually decreased with the blockers’ concentration, without noticeable blocking noise. As the involvement of some auxiliary components was suspected in this difference, we cloned a BK β-subunit from CCVM and coexpressed it with the cloned SAKcaC in CHO cells to examine its effects on the SAKcaC. Although the pharmacological properties of the cloned SAKcaC turned out to be very similar to the native one by the coexpression, it also significantly altered the key characteristics of SAKcaC, such as voltage- and Ca2+-dependencies. Therefore we concluded that the native SAKca in CCVM does not interact with the corresponding endogenous β-subunit. The difference in pharmacological properties between the expressed SAKcaC in CHO and the native one in CCVM suggests that the native SAKca in CCVM is modulated by unknown auxiliary components.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off