Characterization of a CLE processing activity

Characterization of a CLE processing activity Proteins containing a conserved motif known as the CLE domain are found widely distributed across land plants. While the functions of most CLE proteins are unknown, specific CLE proteins have been shown to control shoot meristem, root and vascular development. This has been best studied for CLV3 which is required for stem cell differentiation at shoot and flower meristems. In vivo evidence indicates that the CLE domain is the functional region for CLV3, and that it is proteolytically processed from the CLV3 precursor protein. But the mechanism and activity responsible for this processing is poorly understood. Here we extend analysis of an in vitro CLE processing activity and show that in vitro cleavage occurs at Arg70, exactly matching in vivo maturation. We provide evidence that related processing activities are present in multiple tissues and species. We show that efficient protease recognition can occur with as little as four residues upstream of the CLE domain, and that the conserved arginine at position +1 and conserved acidic residues at positions −2 and/or −3 are required for efficient cleavage. Finally, we provide evidence that the N-terminal processing enzyme is a secreted serine protease while C-terminal processing may occur via a progressive carboxypeptidase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization of a CLE processing activity

Loading next page...
 
/lp/springer_journal/characterization-of-a-cle-processing-activity-W6lgREHyco
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Sciences; Plant Pathology; Biochemistry, general
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9708-2
Publisher site
See Article on Publisher Site

Abstract

Proteins containing a conserved motif known as the CLE domain are found widely distributed across land plants. While the functions of most CLE proteins are unknown, specific CLE proteins have been shown to control shoot meristem, root and vascular development. This has been best studied for CLV3 which is required for stem cell differentiation at shoot and flower meristems. In vivo evidence indicates that the CLE domain is the functional region for CLV3, and that it is proteolytically processed from the CLV3 precursor protein. But the mechanism and activity responsible for this processing is poorly understood. Here we extend analysis of an in vitro CLE processing activity and show that in vitro cleavage occurs at Arg70, exactly matching in vivo maturation. We provide evidence that related processing activities are present in multiple tissues and species. We show that efficient protease recognition can occur with as little as four residues upstream of the CLE domain, and that the conserved arginine at position +1 and conserved acidic residues at positions −2 and/or −3 are required for efficient cleavage. Finally, we provide evidence that the N-terminal processing enzyme is a secreted serine protease while C-terminal processing may occur via a progressive carboxypeptidase.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 4, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off