Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge

Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge DORMANCY ASSOCIATED MADS-BOX (DAM) genes are related to AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE genes of arabidopsis and are differentially regulated coordinately with endodormancy induction and release in buds of several perennial plant species. DAM genes were first shown to directly impact endodormancy in peach where a deletion of a series of DAM resulted in loss of endodormancy induction. We have cloned and characterized several MADS box genes from the model perennial weed leafy spurge. Leafy spurge DAM genes are preferentially expressed in shoot tips and buds in response to cold temperatures and day length in a manner that is relative to the level of endodormancy induced by various environmental conditions. Over-expression of one DAM gene in arabidopsis delays flowering. Additionally, we show that at least one DAM gene is differentially regulated by chromatin remodeling. Comparisons of the DAM gene promoters between poplar and leafy spurge have identified several conserved sequences that may be important for their expression patterns in response to dormancy-inducing stimuli. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge

Loading next page...
 
/lp/springer_journal/characterization-expression-and-function-of-dormancy-associated-mads-O17yfRcbkM
Publisher
Springer Journals
Copyright
Copyright © 2010 by U.S. Government
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9596-5
Publisher site
See Article on Publisher Site

Abstract

DORMANCY ASSOCIATED MADS-BOX (DAM) genes are related to AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE genes of arabidopsis and are differentially regulated coordinately with endodormancy induction and release in buds of several perennial plant species. DAM genes were first shown to directly impact endodormancy in peach where a deletion of a series of DAM resulted in loss of endodormancy induction. We have cloned and characterized several MADS box genes from the model perennial weed leafy spurge. Leafy spurge DAM genes are preferentially expressed in shoot tips and buds in response to cold temperatures and day length in a manner that is relative to the level of endodormancy induced by various environmental conditions. Over-expression of one DAM gene in arabidopsis delays flowering. Additionally, we show that at least one DAM gene is differentially regulated by chromatin remodeling. Comparisons of the DAM gene promoters between poplar and leafy spurge have identified several conserved sequences that may be important for their expression patterns in response to dormancy-inducing stimuli.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 13, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off