Characterization and phenanthrene sorption of organic matter fractions isolated from organic and mineral soils

Characterization and phenanthrene sorption of organic matter fractions isolated from organic and... Sorption of phenanthrene (PHE) to humic acid (HA) and humin (HM) fractions isolated from organic and mineral soils was investigated to better understand sorption processes in varying soil types. Samples were characterized by elemental analysis, X-ray photoelectron spectroscopy, 13C nuclear magnetic resonance, and CO2 adsorption. No clear correlation was found between the distribution coefficient (K d) and the bulk polarity of the soil organic matters (SOMs). By contrast, PHE K d values generally increased with increasing surface polarity of the tested SOMs, implying that surface polarity may play a more important role in PHE sorption than the bulk one. The organic carbon (OC)-normalized K d values (K oc) of HMs were higher than those of HAs as a result of the higher aliphatic C contents of HMs. For SOMs isolated from mineral soil (MI-SOMs), part of the aliphatic domains may be tightly associated with minerals and were not accessible to PHE molecules, resulting in lower PHE K oc values of MI-SOMs than the corresponding fractions extracted from the organic soil. This study implies that both chemical characteristics and physical conformation of SOMs are paramount considerations when investigating sorption process of hydrophobic organic compounds in soils. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Characterization and phenanthrene sorption of organic matter fractions isolated from organic and mineral soils

Loading next page...
 
/lp/springer_journal/characterization-and-phenanthrene-sorption-of-organic-matter-fractions-0rKkVJVsSl
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1814-8
Publisher site
See Article on Publisher Site

Abstract

Sorption of phenanthrene (PHE) to humic acid (HA) and humin (HM) fractions isolated from organic and mineral soils was investigated to better understand sorption processes in varying soil types. Samples were characterized by elemental analysis, X-ray photoelectron spectroscopy, 13C nuclear magnetic resonance, and CO2 adsorption. No clear correlation was found between the distribution coefficient (K d) and the bulk polarity of the soil organic matters (SOMs). By contrast, PHE K d values generally increased with increasing surface polarity of the tested SOMs, implying that surface polarity may play a more important role in PHE sorption than the bulk one. The organic carbon (OC)-normalized K d values (K oc) of HMs were higher than those of HAs as a result of the higher aliphatic C contents of HMs. For SOMs isolated from mineral soil (MI-SOMs), part of the aliphatic domains may be tightly associated with minerals and were not accessible to PHE molecules, resulting in lower PHE K oc values of MI-SOMs than the corresponding fractions extracted from the organic soil. This study implies that both chemical characteristics and physical conformation of SOMs are paramount considerations when investigating sorption process of hydrophobic organic compounds in soils.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off