Characteristics of the reparative regeneration of fins in the polypterid fish (Polypteridae, Actinopterygii)

Characteristics of the reparative regeneration of fins in the polypterid fish (Polypteridae,... Epimorphic regeneration of fins was studied in different ray-finned fishes (Actinopterygii), but species representing the phylogenetically basal lineages of the taxon have remained outside the attention of researchers. Information on the regenerative abilities of these groups is important both for understanding the evolutionary origins of the epimorphic regeneration phenomenon and for assessing the universality of regenerative potencies in Actinopterygii. Addressing this problem, we studied for the first time fin regeneration in two members of the archaic family Polypteridae: the ropefish (Erpetoichthys calabaricus) and the Senegal bichir (Polypterus senegalus). Along with the ability to regenerate the bony rays of fins, widespread among Actinopterygii, polypterids show the ability to effectively regenerate the endoskeleton and musculature of their fins. This unusual feature allows us to suggest polypterids as new model organisms for the study of the mechanisms of vertebrate limb regeneration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Characteristics of the reparative regeneration of fins in the polypterid fish (Polypteridae, Actinopterygii)

Loading next page...
 
/lp/springer_journal/characteristics-of-the-reparative-regeneration-of-fins-in-the-VgLtREm0nM
Publisher
Springer Journals
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360412020063
Publisher site
See Article on Publisher Site

Abstract

Epimorphic regeneration of fins was studied in different ray-finned fishes (Actinopterygii), but species representing the phylogenetically basal lineages of the taxon have remained outside the attention of researchers. Information on the regenerative abilities of these groups is important both for understanding the evolutionary origins of the epimorphic regeneration phenomenon and for assessing the universality of regenerative potencies in Actinopterygii. Addressing this problem, we studied for the first time fin regeneration in two members of the archaic family Polypteridae: the ropefish (Erpetoichthys calabaricus) and the Senegal bichir (Polypterus senegalus). Along with the ability to regenerate the bony rays of fins, widespread among Actinopterygii, polypterids show the ability to effectively regenerate the endoskeleton and musculature of their fins. This unusual feature allows us to suggest polypterids as new model organisms for the study of the mechanisms of vertebrate limb regeneration.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Mar 27, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off