Characteristics of oxidative stress in potato plants with modified carbohydrate metabolism

Characteristics of oxidative stress in potato plants with modified carbohydrate metabolism Effects of sugars on the development of hypothermia-induced oxidative stress were studied in leaves of two potato genotypes (Solanum tuberosum L., cv. Désirée): with normal carbohydrate metabolism and a genotype with increased sugar content modified by insertion of yeast-derived invertase gene. It was found that generation of proceeds more actively in transformed plants than in control plants. On the contrary H2O2 concentration and the catalese and peroxidase activities were lower. At the same time, the activities of superoxide dismutase were similar in plants of both genotypes. A short-term incubation of plants at −7°C confirmed that a higher freezing tolerance of transformed plants was due to low-molecular-weight components of antioxidant protection system rather than to enzymatic component. Literature data and experimental results suggest that the protective effect of sugars is caused by their ability to scavenge ROS nonspecifically under stress conditions http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Characteristics of oxidative stress in potato plants with modified carbohydrate metabolism

Loading next page...
 
/lp/springer_journal/characteristics-of-oxidative-stress-in-potato-plants-with-modified-cFXTZJKrXa
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443709020046
Publisher site
See Article on Publisher Site

Abstract

Effects of sugars on the development of hypothermia-induced oxidative stress were studied in leaves of two potato genotypes (Solanum tuberosum L., cv. Désirée): with normal carbohydrate metabolism and a genotype with increased sugar content modified by insertion of yeast-derived invertase gene. It was found that generation of proceeds more actively in transformed plants than in control plants. On the contrary H2O2 concentration and the catalese and peroxidase activities were lower. At the same time, the activities of superoxide dismutase were similar in plants of both genotypes. A short-term incubation of plants at −7°C confirmed that a higher freezing tolerance of transformed plants was due to low-molecular-weight components of antioxidant protection system rather than to enzymatic component. Literature data and experimental results suggest that the protective effect of sugars is caused by their ability to scavenge ROS nonspecifically under stress conditions

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 31, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off