Characteristics of double-gate SOI CMOS nanotransistors for promising technologies with a low power consumption level

Characteristics of double-gate SOI CMOS nanotransistors for promising technologies with a low... A procedure, allowing one to optimize topological and electrophysical parameters of double gate SOI nanotransistors with a thin unalloyed working area, with underlap gate and drain/source regions with regard to the physical restrictions and process requirements, without recourse to the 2D-simulation, is considered. Based on the numerical simulation results, the selection criteria of the key topological parameters of transistors for implementing the requirements in accordance with the International Technology Roadmap for Semiconductor 2010 Edition program for promising applications with a low power consumption level are discussed. The complex analysis of the VACs of transistors and gate characteristics, such as a time switching delay, as well as active and static power, shows that prototypes of the considered units are applicable for implementing high-performance VLSI projects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Characteristics of double-gate SOI CMOS nanotransistors for promising technologies with a low power consumption level

Loading next page...
 
/lp/springer_journal/characteristics-of-double-gate-soi-cmos-nanotransistors-for-promising-ufe9eOKXVs
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739712060066
Publisher site
See Article on Publisher Site

Abstract

A procedure, allowing one to optimize topological and electrophysical parameters of double gate SOI nanotransistors with a thin unalloyed working area, with underlap gate and drain/source regions with regard to the physical restrictions and process requirements, without recourse to the 2D-simulation, is considered. Based on the numerical simulation results, the selection criteria of the key topological parameters of transistors for implementing the requirements in accordance with the International Technology Roadmap for Semiconductor 2010 Edition program for promising applications with a low power consumption level are discussed. The complex analysis of the VACs of transistors and gate characteristics, such as a time switching delay, as well as active and static power, shows that prototypes of the considered units are applicable for implementing high-performance VLSI projects.

Journal

Russian MicroelectronicsSpringer Journals

Published: Jan 4, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off