Characteristics of bioenergy grasses important for enhanced NaCl tolerance potential

Characteristics of bioenergy grasses important for enhanced NaCl tolerance potential Growing bioenergy grasses can contribute to a great extent towards the production of biomass, and it can be a potential source of renewable energy. Such grasses, if suitable for marginal land, will solve better the problem of its competition with the cultivation of food crops in arable land. Four different potential bioenergy grasses, e.g., Saccharum arundinaceum Retz., hybrid Napier var. CO-3, Saccharum spontaneum L., and Arundo donax L. were selected based on our earlier study, and these perennial grasses were subjected to NaCl stress, a characteristic feature of marginal lands. Various measurements to assess the NaCl tolerance mechanism, e.g., MDA content, antioxidant enzyme activity, photosynthetic pigments composition, chlorophyll fluorescence and photosystem I (PSI) and photosystem II (PSII) activities were analyzed after imparting NaCl stress and compared with the control plants. Among the grasses studied, a lower maximum quantum yield of PSII (F v/F m) and PSI and PSII activities were recorded in S. spontaneum and Napier var. CO-3 than in S. arundinaceum and A. donax. The latter two grasses showed less degradation of total chlorophyll and low MDA content. The maintenance of a better water status of A. donax and S. arundinaceum is attributed to the maintenance of favorable osmotic balance by the accumulation of the higher levels of compatible solutes, such as total soluble sugars and proline. The better performance of S. arundinaceum and A. donax under high NaCl conditions was also facilitated by the higher free radical-scavenging potential in them, as represented by the increase in peroxidase activity. These results suggest that S. arundinaceum and A. donax are better adapted to NaCl stress than S. spontaneum and Napier var. CO-3. The high NaCl tolerance potential, exhibited by S. arundinaceum and A. donax, makes them an appropriate choice for marginal lands affected by high levels of NaCl. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Characteristics of bioenergy grasses important for enhanced NaCl tolerance potential

Loading next page...
 
/lp/springer_journal/characteristics-of-bioenergy-grasses-important-for-enhanced-nacl-BQxVWpyLeG
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714050112
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial