Chaperone protein GrpE and the GroEL/GroES complex promote the correct folding of tobacco mosaic virus coat protein for ribonucleocapsid assembly in vivo

Chaperone protein GrpE and the GroEL/GroES complex promote the correct folding of tobacco mosaic... Several prokaryotic chaperone proteins were shown to promote the correct folding and in vivo assembly of tobacco mosaic virus coat protein (TMV CP) using a chimaeric RNA packaging system in control or chaperone-deficient mutant strains of Escherichia coli . Mutations in groEL or dnaK reduced the amount of both total and soluble TMV CP, and the yield of assembled TMV-like particles, several-fold. Thus both GroEL and DnaK have significant direct or indirect effects on the overall expression, stability, folding and assembly of TMV CP in vivo. In contrast, while cells carrying a mutation in grpE expressed TMV CP to a higher overall level than control E. coli , the amounts of both soluble CP and assembled TMV-like particles were below control levels, suggesting a negative effect of GrpE on overall CP accumulation, but positive role(s) in CP folding and assembly. Curiously, cells with mutations in groES and, to a lesser extent, dnaJ expressed total, soluble and assembled forms of TMV CP significantly above control values, suggesting some form of negative control by these chaperone proteins. To avoid pleiotropic effects or artefacts in chaperone- null mutants, selected chaperone proteins were also over-expressed in control E. coli cells. Overproduction of GroEL or GroES alone had little effect. However, co-overexpression of GroEL and GroES resulted in a two-fold increase in soluble TMV CP and a four-fold rise in assembled TMV-like (pseudovirus) particles in vivo. Moreover, TMV CP was shown to interact directly with GroEL in vivo. Together, these results suggest that GrpE and the GroEL/GroES chaper- one complex promote the correct folding and assembly of TMV CP into ribonucleocapsids in vivo. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Chaperone protein GrpE and the GroEL/GroES complex promote the correct folding of tobacco mosaic virus coat protein for ribonucleocapsid assembly in vivo

Loading next page...
 
/lp/springer_journal/chaperone-protein-grpe-and-the-groel-groes-complex-promote-the-correct-094B8SRNZR
Publisher
Springer Journals
Copyright
Copyright © Wien by 1998 Springer-Verlag/
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050050452
Publisher site
See Article on Publisher Site

Abstract

Several prokaryotic chaperone proteins were shown to promote the correct folding and in vivo assembly of tobacco mosaic virus coat protein (TMV CP) using a chimaeric RNA packaging system in control or chaperone-deficient mutant strains of Escherichia coli . Mutations in groEL or dnaK reduced the amount of both total and soluble TMV CP, and the yield of assembled TMV-like particles, several-fold. Thus both GroEL and DnaK have significant direct or indirect effects on the overall expression, stability, folding and assembly of TMV CP in vivo. In contrast, while cells carrying a mutation in grpE expressed TMV CP to a higher overall level than control E. coli , the amounts of both soluble CP and assembled TMV-like particles were below control levels, suggesting a negative effect of GrpE on overall CP accumulation, but positive role(s) in CP folding and assembly. Curiously, cells with mutations in groES and, to a lesser extent, dnaJ expressed total, soluble and assembled forms of TMV CP significantly above control values, suggesting some form of negative control by these chaperone proteins. To avoid pleiotropic effects or artefacts in chaperone- null mutants, selected chaperone proteins were also over-expressed in control E. coli cells. Overproduction of GroEL or GroES alone had little effect. However, co-overexpression of GroEL and GroES resulted in a two-fold increase in soluble TMV CP and a four-fold rise in assembled TMV-like (pseudovirus) particles in vivo. Moreover, TMV CP was shown to interact directly with GroEL in vivo. Together, these results suggest that GrpE and the GroEL/GroES chaper- one complex promote the correct folding and assembly of TMV CP into ribonucleocapsids in vivo.

Journal

Archives of VirologySpringer Journals

Published: Nov 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off