Channel Modeling of Wireless Sensor Networks in Oil

Channel Modeling of Wireless Sensor Networks in Oil Electromagnetic (EM) techniques enable efficient wireless communications in different media with high material absorptions, such as underground soil, water and oil medium. A wide range of novel and important applications in such challenged environments can be realized based on the EM communication mechanism. In this paper, the propagation based on EM waves in the megahertz (MHz) and gigahertz (GHz) band through a different types of oil is analyzed in order to explore its applicability in pipelines and oil sands. The developed model evaluates the total path loss and the transmission characteristics. Moreover, based on the proposed channel model, the resulting bit error rate (BER) is analyzed that an EM wave experiences when propagating through the oil medium. The propagation characteristics are investigated through simulation. The theoretical analysis and the simulation results prove the feasibility of wireless communication in the MHz and GHz band in oil environment and highlight several important aspects in this field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Channel Modeling of Wireless Sensor Networks in Oil

Loading next page...
 
/lp/springer_journal/channel-modeling-of-wireless-sensor-networks-in-oil-3074WkVNC7
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4083-9
Publisher site
See Article on Publisher Site

Abstract

Electromagnetic (EM) techniques enable efficient wireless communications in different media with high material absorptions, such as underground soil, water and oil medium. A wide range of novel and important applications in such challenged environments can be realized based on the EM communication mechanism. In this paper, the propagation based on EM waves in the megahertz (MHz) and gigahertz (GHz) band through a different types of oil is analyzed in order to explore its applicability in pipelines and oil sands. The developed model evaluates the total path loss and the transmission characteristics. Moreover, based on the proposed channel model, the resulting bit error rate (BER) is analyzed that an EM wave experiences when propagating through the oil medium. The propagation characteristics are investigated through simulation. The theoretical analysis and the simulation results prove the feasibility of wireless communication in the MHz and GHz band in oil environment and highlight several important aspects in this field.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Mar 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off